Role of G-proteins in the effects of leptin on pedunculopontine nucleus neurons

The pedunculopontine nucleus (PPN), the cholinergic arm of the reticular activating system, regulates waking and rapid eye movement sleep. Here, we demonstrate immunohistochemical labeling of the leptin receptor signaling isoform in PPN neurons, and investigated the effects of G-protein modulation a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Beck, P.
Otros Autores: Mahaffey, S., Urbano, F.J, Garcia-Rill, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14107caa a22014297a 4500
001 PAPER-24208
003 AR-BaUEN
005 20230518205601.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84883740663 
024 7 |2 cas  |a Cyclic Nucleotide-Gated Cation Channels; GTP-Binding Proteins, 3.6.1.-; Leptin; Potassium Channels; Receptors, N-Methyl-D-Aspartate; Sodium Channels; hyperpolarization-activated cation channel 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JONRA 
100 1 |a Beck, P. 
245 1 0 |a Role of G-proteins in the effects of leptin on pedunculopontine nucleus neurons 
260 |c 2013 
270 1 0 |m Garcia-Rill, E.; Department of Neurobiology and Development Science, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, 4301 West Markham St., Slot 847, Little Rock, AR 72205, United States; email: garciarilledgar@uams.edu 
506 |2 openaire  |e Política editorial 
504 |a Ahima, R.S., Flier, J.S., Leptin (2000) Annu. Rev. Physiol., 62, pp. 413-437 
504 |a Aldabal, L., Bahammam, A.S., Metabolic, endocrine, and immune consequences of sleep deprivation (2011) Open Respir. Med. J., 5, pp. 31-43 
504 |a Aramakis, V.B., Bandrowski, A.E., Ashe, J.H., Activation of muscarinic receptors modulates NMDA receptor-mediated responses in auditory cortex (1997) Exp. Brain Res., 113, pp. 484-496 
504 |a Beck, P., Urbano, F.J., Williams, D.K., Garcia-Rill, E., Effects of leptin on pedunculopontine nucleus (PPN) neurons (2013) J. Neural Transm., , [Epub ahead of print] 
504 |a Bjorbaeck, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E., Flier, J.S., Identification of SOCS-3 as a potential mediator of central leptin resistance (1998) Mol. Cell, 1, pp. 619-625 
504 |a Caldwell, D.F., Domino, E.F., Electroencephalographic and eye movement patterns during sleep in chronic schizophrenic patients (1967) Electroencephalogr. Clin. Neurophysiol., 22, pp. 414-420 
504 |a Cizza, G., Ronsaville, D.S., Kleitz, H., Clinical subtypes of depression are associated with specific metabolic parameters and circadian endocrine profiles in women: The power study (2012) PLoS ONE, 7, pp. e28912 
504 |a Cottrell, E.C., Cripps, R.L., Duncan, J.S., Barrett, P., Mercer, J.G., Herwig, A., Ozanne, S.E., Developmental changes in hypothalamic leptin receptor: Relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat (2009) Am. J. Physiol. Regul. Integr. Comp. Physiol., 296, pp. R631-R639 
504 |a Datta, S., Prutzman, S.L., Novel role of brain stem pedunculopontine tegmental adenylyl cyclase in the regulation of spontaneous REM sleep in the freely moving rat (2005) J. Neurophysiol., 94, pp. 1928-1937 
504 |a Deckleman, M.C., Dixon, L.B., Conley, R.R., Comorbid bulimia nervosa and schizophrenia (1997) Int. J. Eat. Disord., 22, pp. 101-105 
504 |a Delorme, A., Makeig, S., EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis (2004) J. Neurosci. Methods, 134, pp. 9-21 
504 |a Dixon, J.B., Dixon, M.E., Anderson, M.L., Schachter, L., O'Brien, P.E., Daytime sleepiness in the obese: Not as simple as obstructive sleep apnea (2007) Obesity (Silver Spring), 15, pp. 2504-2511 
504 |a Durakoglugil, M., Irving, A.J., Harvey, J., Leptin induces a novel form of NMDA receptor-dependent long-term depression (2005) J. Neurochem., 95, pp. 396-405 
504 |a Fukuda, M., Williams, K.W., Gautron, L., Elmquist, J.K., Induction of leptin resistance by activation of cAMP-Epac signaling (2011) Cell Metab., 13, pp. 331-339 
504 |a Garcia-Rill, E., Charlesworth, A., Heister, D., Ye, M., Hayar, A., The developmental decrease in REM sleep: The role of transmitters and electrical coupling (2008) Sleep, 31, pp. 673-690 
504 |a Garcia-Rill, E., Wallace-Huitt, T., Mennemeier, M., Charlesworth, A., Heister, D., Ye, M., Yates, C., Neuropharmacology of sleep and wakefulness (2009) Sleep Medicine Essentials, pp. 15-21. , in (Lee-Chiong T. L. ed), Wiley, New Jersey 
504 |a Harvey, J., Leptin regulation of neuronal excitability and cognitive function (2007) Curr. Opin. Pharmacol., 7, pp. 643-647 
504 |a Hille, B., Modulation of ion-channel function by G-protein-coupled receptors (1994) Trends Neurosci., 17, pp. 531-536 
504 |a Israel, D.D., Sheffer-Babila, S., De Luca, C., Jo, Y.H., Liu, S.M., Xia, Q., Spergel, D.J., Chua, Jr.S.C., Effects of leptin and melanocortin signaling interactions on pubertal development and reproduction (2012) Endocrinology, 153, pp. 2408-2419 
504 |a Jus, K., Bouchard, M., Jus, A., Villeneuve, A., Lachance, R., Sleep EEG studies in untreated long-term schizophrenic patients (1973) Arch. Gen. Psychiatry, 29, pp. 286-290 
504 |a Krebs, D.L., Hilton, D.J., SOCS: Physiological suppressors of cytokine signaling (2000) J. Cell Sci., 113, pp. 2813-2819 
504 |a Liu, S.B., Zhang, N., Guo, Y.Y., G-protein-coupled receptor 30 mediates rapid neuroprotective effects of estrogen via depression of NR2B-containing NMDA receptors (2012) J. Neurosci., 32, pp. 4887-4900 
504 |a Luthi, A., McCormick, D.A., H-current: Properties of a neuronal and network pacemaker (1998) Neuron, 21, pp. 9-12 
504 |a Moult, P.R., Harvey, J., Regulation of glutamate receptor trafficking by leptin (2009) Biochem. Soc. Trans., 37, pp. 1364-1368 
504 |a O'Malley, D., Irving, A.J., Harvey, J., Leptin-induced dynamic alterations in the actin cytoskeleton mediate the activation and synaptic clustering of BK channels (2005) FASEB J., 19, pp. 1917-1919 
504 |a Perellõ, M., Zigman, J.M., The role of ghrelin in reward-based eating (2012) Biol. Psychiatry, 72, pp. 347-353 
504 |a Ross, R.J., Bull, W.A., Sullivan, K.A., Caraff, S.N., Sleep disturbance as the hallmark of posttraumatic stress disorder (1989) Am. J. Psychiatry, 146, pp. 697-707 
504 |a Sahu, A., Intracellular leptin-signaling pathways in hypothalamic neurons: The emerging role of phosphatidylinositol-3 kinase-phosphodiesterase-3B-cAMP pathway (2011) Neuroendocrinology, 93, pp. 201-210 
504 |a Sentissi, O., Epelbaum, J., Olie, J.P., Poirier, M.F., Leptin and ghrelin levels in patients with schizophrenia during different antipsychotics treatment: A review (2008) Schizophr. Bull., 34, pp. 1189-1199 
504 |a Shanley, L.J., Irving, A.J., Harvey, J., Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity (2001) J. Neurosci., 21, pp. RC186 
504 |a Shanley, L.J., O'Malley, D., Irving, A.J., Ashford, M.L., Harvey, J., Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels (2002) J. Physiol., 545, pp. 933-944 
504 |a Shouse, M.N., Siegel, J.M., Pontine regulation of REM sleep components in cats: Integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep (1992) Brain Res., 571, pp. 50-63 
504 |a Shpilman, M., Niv-Spector, L., Katz, M., Varol, C., Solomon, G., Ayalon-Soffer, M., Boder, E., Gertler, A., Development and characterization of high affinity leptins and leptin antagonists (2011) J. Biol. Chem., 286, pp. 4429-4442 
504 |a Simon, C., Hayar, A., Garcia-Rill, E., Responses of developing pedunculopontine neurons to glutamate receptor agonists (2011) J. Neurophysiol., 105, pp. 1918-1931 
504 |a Sinton, M.M., Goldschmidt, A.B., Aspen, V., Theim, K.R., Stein, R.I., Saelens, B.E., Epstein, L.H., Wilfley, D.E., Psychosocial correlates of shape and weight concerns in overweight pre-adolescents (2012) J. Youth Adolesc., 41, pp. 67-75 
504 |a Spiegel, K., Knutson, K., Leproult, R., Tasali, E., Van, C.E., Sleep loss: A novel risk factor for insulin resistance and Type 2 diabetes (2005) J. Appl. Physiol., 99, pp. 2008-2019 
504 |a Steriade, M., Datta, S., Pare, D., Oakson, G., Curro Dossi, R.C., Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems (1990) J. Neurosci., 10, pp. 2541-2559 
504 |a Taheri, S., Lin, L., Austin, D., Young, T., Mignot, E., Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index (2004) PLoS Med., 1, pp. e62 
504 |a Tong, H., Gibb, A.J., Dopamine D1 receptor inhibition of NMDA receptor currents mediated by tyrosine kinase-dependent receptor trafficking in neonatal rat striatum (2008) J. Physiol., 586, pp. 4693-4707 
504 |a Vanoye, C.G., Kunic, J.D., Ehring, G.R., George, Jr.A.L., Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling (2013) J. Gen. Physiol., 141, pp. 193-202 
504 |a Vgontzas, A.N., Bixler, E.O., Tan, T.L., Kantner, D., Martin, L.F., Kales, A., Obesity without sleep apnea is associated with daytime sleepiness (1998) Arch. Intern. Med., 158, pp. 1333-1337 
520 3 |a The pedunculopontine nucleus (PPN), the cholinergic arm of the reticular activating system, regulates waking and rapid eye movement sleep. Here, we demonstrate immunohistochemical labeling of the leptin receptor signaling isoform in PPN neurons, and investigated the effects of G-protein modulation and the leptin triple antagonist (TA) on the action of leptin in the PPN. Whole-cell patch clamp recordings were performed in rat brainstem slices from 9 to 17 day old pups. Previous results showed that leptin caused a partial blockade of sodium (INa) and h-current (IH) in PPN neurons. TA (100 nM) reduced the blockade of INa (~ 50% reduction) and IH (~ 93% reduction) caused by leptin. Intracellular guanosine 5′-[β-thio]diphosphate trilithium salt (a G-protein inhibitor) significantly reduced the effect of leptin on INa(~ 60% reduction) but not on IH (~ 25% reduction). Intracellular GTPγS (a G-protein activator) reduced the effect of leptin on both INa (~ 80% reduction) and IH (~ 90% reduction). These results suggest that the effects of leptin on the intrinsic properties of PPN neurons are leptin receptor- and G-protein dependent. We also found that leptin enhanced NMDA receptor-mediated responses in single neurons and in the PPN population as a whole, an effect blocked by TA. These experiments further strengthen the association between leptin dysregulation and sleep disturbances. Beck et al. investigated the effects of leptin on the intrinsic properties of neurons from the pedunculopontine nucleus (PPN). Leptin reduced the amplitude of voltage-gated sodium (INa) and hyperpolarization-activated cyclic nucleotide-gated HCN (IH) channels. These effects were antagonized by a leptin receptor (OB-R) antagonist and by the G-protein antagonist GDPβ. Beck et al. investigated the effects of leptin on the intrinsic properties of neurons from the pedunculopontine nucleus (PPN). Leptin reduced the amplitude of voltage-gated sodium (INa) and hyperpolarization-activated cyclic nucleotide-gated HCN (IH) channels. These effects were antagonized by a leptin receptor (OB-R) antagonist and by the G-protein antagonist GDPβ. © 2013 International Society for Neurochemistry.  |l eng 
593 |a Department of Neurobiology and Development Science, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, 4301 West Markham St., Slot 847, Little Rock, AR 72205, United States 
593 |a IFIBYNE, CONICET, University of Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a AROUSAL 
690 1 0 |a GDPΒ, GTPΓS 
690 1 0 |a HYPERPOLARIZATION-ACTIVATED CATION CURRENT 
690 1 0 |a SODIUM CURRENT 
690 1 0 |a GUANINE NUCLEOTIDE BINDING PROTEIN 
690 1 0 |a LEPTIN 
690 1 0 |a LEPTIN RECEPTOR 
690 1 0 |a N METHYL DEXTRO ASPARTIC ACID RECEPTOR 
690 1 0 |a PROTON PUMP 
690 1 0 |a SODIUM CHANNEL 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a BRAIN NERVE CELL 
690 1 0 |a BRAIN SLICE 
690 1 0 |a BRAIN STEM 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a FEMALE 
690 1 0 |a MALE 
690 1 0 |a NONHUMAN 
690 1 0 |a PATCH CLAMP 
690 1 0 |a PEDUNCULOPONTINE TEGMENTAL NUCLEUS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a RAT 
690 1 0 |a AROUSAL 
690 1 0 |a GDPΒ, GTPΓS 
690 1 0 |a HYPERPOLARIZATION-ACTIVATED CATION CURRENT 
690 1 0 |a SODIUM CURRENT 
690 1 0 |a ANIMALS 
690 1 0 |a CYCLIC NUCLEOTIDE-GATED CATION CHANNELS 
690 1 0 |a DATA INTERPRETATION, STATISTICAL 
690 1 0 |a EXCITATORY POSTSYNAPTIC POTENTIALS 
690 1 0 |a FEMALE 
690 1 0 |a GTP-BINDING PROTEINS 
690 1 0 |a IMMUNOHISTOCHEMISTRY 
690 1 0 |a LEPTIN 
690 1 0 |a MALE 
690 1 0 |a MEMBRANE POTENTIALS 
690 1 0 |a NEURONS 
690 1 0 |a PATCH-CLAMP TECHNIQUES 
690 1 0 |a PEDUNCULOPONTINE TEGMENTAL NUCLEUS 
690 1 0 |a POPULATION 
690 1 0 |a POTASSIUM CHANNELS 
690 1 0 |a RATS 
690 1 0 |a RATS, SPRAGUE-DAWLEY 
690 1 0 |a RECEPTORS, N-METHYL-D-ASPARTATE 
690 1 0 |a SODIUM CHANNELS 
690 1 0 |a RATTUS 
700 1 |a Mahaffey, S. 
700 1 |a Urbano, F.J. 
700 1 |a Garcia-Rill, E. 
773 0 |d 2013  |g v. 126  |h pp. 705-714  |k n. 6  |p J. Neurochem.  |x 00223042  |w (AR-BaUEN)CENRE-737  |t Journal of Neurochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883740663&doi=10.1111%2fjnc.12312&partnerID=40&md5=168984f88a0f579f869a1294ee698990  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/jnc.12312  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00223042_v126_n6_p705_Beck  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223042_v126_n6_p705_Beck  |y Registro en la Biblioteca Digital 
961 |a paper_00223042_v126_n6_p705_Beck  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85161