Enhanced method for determining the optical response of highly complex biological photonic structures

We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especia...

Descripción completa

Detalles Bibliográficos
Autor principal: Dolinko, Andrés Ezequiel
Otros Autores: Skigin, D.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: OSA - The Optical Society 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11225caa a22012017a 4500
001 PAPER-24200
003 AR-BaUEN
005 20250225100547.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84884559844 
030 |a JOAOD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Dolinko, Andrés Ezequiel 
245 1 0 |a Enhanced method for determining the optical response of highly complex biological photonic structures 
260 |b OSA - The Optical Society  |c 2013 
270 1 0 |m Dolinko, A.E.; Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires, Argentina; email: adolinko@df.uba.ar 
504 |a Veselago, V.G., The electrodynamics of substances with simultaneously negative values of e and μ (1968) Sov. Phys. Usp, 10, pp. 509-514 
504 |a Pendry, J.B., Negative refraction makes a perfect lens (2000) Phys. Rev. Lett, 85, pp. 3966-3969 
504 |a Tsukerman, I., Negative refraction and the minimum lattice cell size (2008) J. Opt. Soc. Am. B, 25, pp. 927-936 
504 |a Jensen, L., Lei, Z., Chan, C.T., Sheng, P., Photonic band gap from a stack of positive and negative index materials (2003) Phys. Rev. Lett, 90, p. 083901 
504 |a Grbic, A., Eleftheriades, G.V., Overcoming the diffraction limit with a planar left-handed transmission-line lens (2004) Phys. Rev. Lett, 92, p. 117403 
504 |a Ergin, T., Stenger, N., Brenner, P., Pendry, J.B., Wegener, M., Three-dimensional invisibility cloak at optical wavelengths (2010) Science, 328, pp. 337-339 
504 |a Settle, M., Engelen, R., Salib, M., Michaeli, A., Kuipers, L., Krauss, T.F., Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth (2007) Opt. Express, 15, pp. 219-226 
504 |a O'brien, D., Gomez-Iglesias, A., Settle, M.D., Michaeli, A., Salib, M., Krauss, T.F., Tunable optical delay using photonic crystal heterostructure nanocavities (2007) Phys. Rev. B, 76, p. 115110 
504 |a Valentine, J., Li, J., Zentgraf, T., Bartal, G., Zhang, X., An optical cloak made of dielectrics (2009) Nat. Mater, 8, pp. 568-571 
504 |a Joannopoulos, J., Meade, R., Winn, J., (1995) Photonic Crystals, , Princeton University 
504 |a Russell, P., Photonic crystal fibers (2003) Science, 299, pp. 358-362 
504 |a Huntington, S., Katsifolis, J., Gibson, B., Canning, J., Lyytikainen, K., Zagari, J., Cahill, L., Love, J., Retaining and characterising nano-structure within tapered air-silica structured optical fibers (2003) Opt. Express, 11, pp. 98-104 
504 |a Martelli, C., Canning, J., Gibson, B., Huntington, S., Bend loss in structured optical fibres (2007) Opt. Express, 15, pp. 17639-17644 
504 |a Vukusic, P., Sambles, J.R., Photonic structures in biology (2003) Nature, 424, pp. 852-855 
504 |a Kinoshita, S., (2008) Structural Colors in the Realm of Nature, , World Scientific 
504 |a Berthier, S., (2007) Iridescences, the Physical Colours of Insects, , Springer 
504 |a Inchaussandague, M., Skigin, D., Carmaran, C., Rosenfeldt, S., Structural color in myxomycetes (2010) Opt. Express, 18, pp. 16055-16063 
504 |a Luna, A.E., Skigin, D.C., Inchaussandague, M., Alsina, A.R., Structural color in beetles of South America (2010) Proc. SPIE, 7782, p. 778205 
504 |a Andrewartha, J.R., Fox, J.R., Wilson, I.J., Resonance anomalies in the lamellar grating (1979) Opt. Acta, 26, pp. 69-89 
504 |a Skigin, D.C., Depine, R.A., The multilayer modal method for electromagnetic scattering from surfaces with several arbitrarily shaped grooves (1997) J. Mod. Opt, 44, pp. 1023-1036 
504 |a Depine, R.A., Skigin, D.C., Multilayer modal method for diffraction from dielectric inhomogeneous apertures (1998) J. Opt. Soc. Am. A, 15, pp. 675-683 
504 |a Moharam, M.G., Gaylord, T.K., Rigorous coupled-wave analysis of planar-grating diffraction (1981) J. Opt. Soc. Am. A, 71, pp. 811-818 
504 |a Chandezon, J., Dupuis, M., Cornet, G., Maystre, D., Multicoated gratings: A differential formalism applicable in the entire optical region (1982) J. Opt. Soc. Am, 72, pp. 839-846 
504 |a Depine, R.A., Inchaussandague, M.E., Corrugated diffraction gratings in uniaxial crystals (1994) J. Opt. Soc. Am. A, 11, pp. 173-180 
504 |a Maradudin, A.A., Michel, T.R., McGurn, A.R., Méndez, E.R., Enhanced backscattering of light from a random grating (1990) Ann. Phys, 203, pp. 255-307 
504 |a Lester, M., Skigin, D.C., Depine, R.A., Blaze produced by a dual-period array of subwavelength cylinders (2009) J. Opt. A, 11, p. 045705 
504 |a Schmidt, G., Kleemann, B.H., Integral equation methods from grating theory to photonics: An overview and new approaches for conical diffraction (2011) J. Mod. Opt, 58, pp. 407-423 
504 |a Taflove, A., Hagness, S.C., (2005) Computational Electrodynamics: The Finite-Difference Time-Domain Method, , , 3rd ed. Artech 
504 |a Yee, K., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media (1966) IEEE Trans. Antennas Propag, 14, pp. 302-307 
504 |a Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., Johnson, S.G., MEEP: A flexible freesoftware package for electromagnetic simulations by the FDTD method (2010) Comput. Phys. Commun, 181, pp. 687-702 
504 |a Kolle, M., (2011) Photonic Structures Inspired by Nature, , Springer- Verlag 
504 |a Su, M.F., El-Kady, I., Bader, D.A., Lin, S., A novel FDTD application featuring OpenMP-MPI hybrid parallelization (2004) Proceedings of the 33rd International Conference on Parallel Processing (ICPP), Montreal, pp. 373-379 
504 |a Dolinko, A.E., From Newton's second law to Huygens's principle: Visualizing waves in a large array of masses joined by springs (2009) Eur. J. Phys, 30, pp. 1217-1228 
504 |a Pei, T.-H., Huang, Y.-T., Effective refractive index of the photonic crystal deduced from the oscillation model of the membrane (2012) J. Opt. Soc. Am. B, 29, pp. 2334-2338 
504 |a Shannon, C.E., Communication in the presence of noise (1949) Proc. Inst. Radio Eng, 37, pp. 10-21 
504 |a Courant, R., Friedrichs, K., Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik (1928) Math. Ann, 100, pp. 32-74 
504 |a Cobelli, P.J., Maurel, A., Pagneux, V., Petitjeans, P., Global measurement of water waves by Fourier transform profilometry (2009) Exp. Fluids, 46, pp. 1037-1047 
504 |a Berenger, J., A perfectly matched layer for the absorption of electromagnetic waves (1994) J. Comp. Physiol, 114, pp. 185-200 
504 |a Engquist, B., Majda, A., Numerical absorbing boundary conditions for the wave equation (1979) Commun. Pure Appl. Math, 32, pp. 313-357 
504 |a Higdon, R.L., Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation (1986) Math. Comp, 47, pp. 437-459 
504 |a Higdon, R.L., Numerical absorbing boundary conditions for the wave equation (1987) Math. Comp, 49, pp. 65-90 
504 |a Hennelly, B., Sheridan, J.T., Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms (2005) J. Opt. Soc. Am. A, 22, pp. 917-927 
504 |a Jackson, J.D., (1998) Classical Electrodynamics, , 3rd ed.Wiley 
504 |a Dolinko, A., Skigin, D., Inchaussandague, M., Carmaran, C., Photonic simulation method applied to the study of structural color in myxomycetes (2012) Opt. Express, 20, pp. 15139-15148 
506 |2 openaire  |e Política editorial 
520 3 |a We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done via a digital image of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of the simulation space, and a multifrequency excitation scheme. We also show how the simulation can be adapted to apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance. © 2013 Optical Society of America.  |l eng 
593 |a Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires, Argentina 
593 |a Grupo de Electromagnetismo Aplicado, Departamento de Física, Universidad de Buenos Aires, and IFIBA-CONICET, Pabellón I, C1428EHABuenos Aires, Argentina 
690 1 0 |a WAVE PROPAGATION 
690 1 0 |a BIOLOGICAL STRUCTURES 
690 1 0 |a COMPLEX STRUCTURE 
690 1 0 |a DIRECTION FILTER 
690 1 0 |a FAR-FIELD METHODS 
690 1 0 |a MULTI-FREQUENCY EXCITATION 
690 1 0 |a PHOTONIC STRUCTURE 
690 1 0 |a SIMULATION DOMAIN 
690 1 0 |a TIME-DOMAIN SIMULATIONS 
690 1 0 |a TIME DOMAIN ANALYSIS 
690 1 0 |a ALGORITHM 
690 1 0 |a ARTICLE 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a DICTYOSTELIIDA 
690 1 0 |a ELECTROMAGNETIC RADIATION 
690 1 0 |a IMAGE PROCESSING 
690 1 0 |a METHODOLOGY 
690 1 0 |a OPTICS 
690 1 0 |a PHOTON 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a REPRODUCIBILITY 
690 1 0 |a TRANSMISSION ELECTRON MICROSCOPY 
690 1 0 |a ALGORITHMS 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a DICTYOSTELIIDA 
690 1 0 |a ELECTROMAGNETIC RADIATION 
690 1 0 |a IMAGE PROCESSING, COMPUTER-ASSISTED 
690 1 0 |a MICROSCOPY, ELECTRON, TRANSMISSION 
690 1 0 |a OPTICS AND PHOTONICS 
690 1 0 |a PHOTONS 
690 1 0 |a REPRODUCIBILITY OF RESULTS 
700 1 |a Skigin, D.C. 
773 0 |d OSA - The Optical Society, 2013  |g v. 30  |h pp. 1746-1759  |k n. 9  |p J Opt Soc Am A  |x 10847529  |t Journal of the Optical Society of America A: Optics and Image Science, and Vision 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884559844&doi=10.1364%2fJOSAA.30.001746&partnerID=40&md5=a4d7a5050012bf6c318d6c1c73491c55  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1364/JOSAA.30.001746  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10847529_v30_n9_p1746_Dolinko  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10847529_v30_n9_p1746_Dolinko  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_10847529_v30_n9_p1746_Dolinko  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion