Coupling between transcription and alternative splicing

The scenario of alternative splicing regulation is far more complex than the classical picture of a pre-mRNA being processed post-transcriptionally in more than one way. Introns are efficiently removed while transcripts are still being synthesized, supporting the idea of a co-transcriptional regulat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Schor, I.E
Otros Autores: Gómez Acuña, L.I, Kornblihtt, A.R, Wu J.Y
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 23802caa a22019817a 4500
001 PAPER-24122
003 AR-BaUEN
005 20230518205555.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84891753215 
024 7 |2 cas  |a Chromatin; RNA Polymerase II; RNA Precursors 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Schor, I.E. 
245 1 0 |a Coupling between transcription and alternative splicing 
260 |c 2013 
270 1 0 |m Kornblihtt, A.R.; Laboratorio de Fisiologia y Biologia Molecular, Departmento de Fisiologia, Biologia Molecular y Celular, Universidad de Buenos Aires, Ciudad Universitaria PAB. II, 20 Piso, Buenos Aires 1428, Argentina; email: ark@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Srebrow, A., Kornblihtt, A.R., The connection between splicing and cancer (2006) J Cell Sci, 119 (13), pp. 2635-2641 
504 |a Muñoz, M.J., Perez Santángelo, M.S., Paronetto, M.P., De La Mata, M., Pelisch, F., Boireau, S., Glover-Cutter, K., Kornblihtt, A.R., Dna damage regulates alternative splicing through inhibition of rna polymerase ii elongation (2009) Cell, 137, pp. 708-720 
504 |a Berget, S.M., Exon recognition in vertebrate splicing (1995) J Biol Chem, 270 (6), pp. 2411-2414 
504 |a Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., Burge, C.B., Alternative isoformregulation in human tissue transcriptomes (2008) Nature, 456 (27), pp. 470-476 
504 |a Pan, Q., Shai, O., Lee, L.J., Frey, B.J., Blencowe, B.J., Deep surveying of alternative splicing complexity in the human transcriptome by high throughput sequencing (2008) Nat Genet, 40 (12), pp. 1413-1415 
504 |a Ermakova, E.O., Nurtdinov, R.N., Gelfand, M.S., Fast rate of evolution in alternative spliced coding regions of mammalian genes (2006) BMC Genomics, 7, pp. 84-93 
504 |a Smith, C.W., Valcárcel, J., Alternative pre-mRNA splicing: The logic of combinatorial control (2000) Trends Biochem Sci, 25 (8), pp. 381-388 
504 |a Cáceres, J.F., Kornblihtt, A.R., Alternative splicing: Multiple control mechanisms and involvement in human disease (2002) Trends Genet, 18, pp. 186-193 
504 |a Black, D.L., Mechanisms of alternative pre-messenger RNA splicing (2003) Annu Rev Biochem, 72, pp. 291-336 
504 |a Sharp, P.A., Split genes and RNA splicing (1994) Cell, 77 (6), pp. 805-815 
504 |a Kornblihtt, A.R., Pesce, C.G., Alonso, C.R., The fibronectin gene as a model for splicing and transcription studies (1996) FASEB J, 10 (2), pp. 248-257 
504 |a Fededa, J.P., Petrillo, E., Gelfand, M.S., A polar mechanism coordinates different regions of alternative splicing within a single gene (2005) Mol Cell, 19 (3), pp. 393-404 
504 |a Lenasi, T., Peterlin, B.M., Dovc, P., Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1 (2006) RNA, 12 (3), pp. 498-507 
504 |a Romano, M., Marcucci, R., Baralle, F.E., Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene (2001) Nucleic Acids Res, 29 (4), pp. 886-894 
504 |a Bentley, D., The mRNA assembly line: Transcription and processing machines in the same factory (2002) Curr Opin Cell Biol, 14 (3), pp. 336-342 
504 |a Bentley, D.L., Rules of engagement: Co-Transcriptional recruitment of pre-mRNA processing factors (2005) Curr Opin Cell Biol, 17 (3), pp. 251-256 
504 |a Maniatis, T., Reed, R., An extensive network of coupling among gene expression machines (2002) Nature, 416 (6880), pp. 499-506 
504 |a Kornblihtt, A.R., Promoter usage and alternative splicing (2005) Curr Opin Cell Biol, 17 (3), pp. 262-268 
504 |a Zorio, D.A., Bentley, D.L., The link between mRNA processing and transcription: Communication works both ways (2004) Exp Cell Res, 296 (1), pp. 91-97 
504 |a Neugebauer, K.M., On the importance of being co-Transcriptional (2002) J Cell Sci, 115 (PART 20), pp. 3865-3871 
504 |a Proudfoot, N.J., Furger, A., Dye, M.J., Integrating mRNA processing with transcription (2002) Cell, 108 (4), pp. 501-512 
504 |a Beyer, A.L., Osheim, Y.N., Splice site selection, rate of splicing, and alternative splicing on nascent transcripts (1988) Genes Dev, 2 (6), pp. 754-765 
504 |a Tennyson, C.N., Klamut, H.J., Worton, R.G., The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced (1995) Nat Genet, 9 (2), pp. 184-190 
504 |a Pandya-Jones, A., Black, D.L., Co-Transcriptional splicing of constitutive and alternative exons (2009) RNA, 15, pp. 1896-1908 
504 |a Bauren, G., Wieslander, L., Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription (1994) Cell, 76 (1), pp. 183-192 
504 |a De La Mata, M., Lafaille, C., Kornblihtt, A.R., First come, first served revisited: Factors affecting the same alternative splicing events have different effects on the relative rates of intron removal (2010) RNA, 16, pp. 904-912 
504 |a Lazarev, D., Manley, J.L., Concurrent splicing and transcription are not sufficient to enhance splicing efficiency (2007) RNA, 13, pp. 1546-1557 
504 |a Perales, R., Bentley, D., Cotranscriptionality'': The transcription elongation complex as a nexus for nuclear transactions (2009) Mol Cell, 36, pp. 178-191 
504 |a Alexander, R.D., Innocente, S.A., Barrass, J.D., Beggs, J.D., Splicing-dependent RNA Polymerase pausing in yeast (2010) Mol Cell, 40, pp. 582-593 
504 |a Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S., Fu, X.D., The splicing factor SC35 has an active role in transcriptional elongation (2008) Nat Struct Mol Biol, 15 (8), pp. 819-826 
504 |a Carrillo Oesterreich, F., Preibisch, S., Neugebauer, K.M., Global analysis of nascent RNA reveals transcriptional pausing in terminal exons (2010) Mol Cell, 40, pp. 571-581 
504 |a Smale, S.T., Tjian, R., Transcription of herpes simplex virus tk sequences under the control of wild-Type and mutant human RNA polymerase I promoters (1985) Mol Cell Biol, 5 (2), pp. 352-362 
504 |a Sisodia, S.S., Sollner-Webb, B., Cleveland, D.W., Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation (1987) Mol Cell Biol, 7 (10), pp. 3602-3612 
504 |a McCracken, S., Rosonina, E., Fong, N., Role of RNA polymerase II carboxy-Terminal domain in coordinating transcription with RNA processing (1998) Cold Spring Harb Symp Quant Biol, 63, pp. 301-309 
504 |a Dower, K., Rosbash, M., T7 RNA polymerase-directed transcripts are processed in yeast and link 30 end formation to mRNA nuclear export (2002) RNA, 8 (5), pp. 686-697 
504 |a Hicks, M.J., Yang, C.R., Kotlajich, M.V., Hertel, K.J., Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns (2006) PLoS Biol, 4 (6), pp. e147 
504 |a Das, R., Dufu, K., Romney, B., Feldt, M., Elenko, M., Reed, R., Functional coupling of RNAP II transcription to spliceosome assembly (2006) Genes Dev, 20 (9), pp. 1100-1109 
504 |a Das, R., Yu, J., Zhang, Z., Gygi, M.P., Krainer, A.R., Gygi, S.P., Reed, R., SR proteins function in coupling RNAP II trancription to pre-mRNA splicing (2007) Mol Cell, 26, pp. 867-881 
504 |a Misteli, T., Spector, D.L., RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo (1999) Mol Cell, 3 (6), pp. 697-705 
504 |a McCracken, S., Fong, N., Yankulov, K., The C-Terminal domain of RNA polymerase II couples mRNA processing to transcription (1997) Nature, 385 (6614), pp. 357-361 
504 |a Zeng, C., Berget, S.M., Participation of the C-Terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing (2000) Mol Cell Biol, 20 (21), pp. 8290-8301 
504 |a Hirose, Y., Tacke, R., Manley, J.L., Phosphorylated RNA polymerase II stimulates premRNA splicing (1999) Genes Dev, 13 (10), pp. 1234-1239 
504 |a Dye, M.J., Gromak, N., Proudfoot, N.J., Exon tethering in transcription by RNA polymerase II (2006) Mol Cell, 21 (6), pp. 849-859 
504 |a Sims III, R.J., Belotserkovskaya, R., Reinberg, D., Elongation by RNA polymerase II: The short and long of it (2004) Genes Dev, 18 (20), pp. 2437-2468 
504 |a Breaking barriers to transcription elongation (2006) Nat Rev Mol Cell Biol, 7 (8), pp. 557-567. , Saunders A, Core LJ, Lis J.T 
504 |a Muñoz, M.J., De La Mata, M., Kornblihtt, A.R., The carboxy terminal domain of RNA polymerase II and alternative splicing (2010) Trends Biochem Sci, 35, pp. 497-504 
504 |a Xu, Y.X., Hirose, Y., Zhou, X.Z., Lu, K.P., Manley, J.L., Pin1 modulates the structure and function of human RNA polymerase II (2003) Genes Dev, 17 (22), pp. 2765-2776 
504 |a Bird, G., Zorio, D.A., Bentley, D.L., RNA Polymerase II Carboxy-Terminal domain phosphorylation is required for Cotranscriptional Pre-mRNA Splicing and 30-End formation (2004) Mol Cell Biol, 24 (20), pp. 8963-8969 
504 |a De La Mata, M., Kornblihtt, A.R., Pol II CTD mediates SRp20 regulation of alternative splicing (2006) Nat Struct Mol Biol, 13 (11), pp. 973-980 
504 |a Laurencikiene, J., Kallman, A.M., Fong, N., Bentley, D.L., Ohman, M., RNA editing and alternative splicing: The importance of co-Transcriptional coordination (2006) EMBO Rep, 7 (3), pp. 303-307 
504 |a Rosonina, E., Blencowe, B.J., Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 30-end cleavage (2004) RNA, 10 (4), pp. 581-589 
504 |a Sims III, R.J., Millhouse, S., Chen, C.F., Lewis, B.A., Erdjument-Bromage, H., Tempst, P., Manley, J.L., Reinberg, D., Recognition of Trimethylated Histone H3 Lysine 4 facilitates the recruitment of transcription postinitiation factors and Pre-mRNA splicing (2007) Mol Cell, 28, pp. 665-676 
504 |a Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., Misteli, T., Regulation of alternative splicing by histone modifications (2010) Science, 327, pp. 996-1000 
504 |a Edmunds, J.W., Mahadevan, L.C., Clayton, A.L., Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation (2008) EMBO J, 27, pp. 406-420 
504 |a Krogan, N.J., Kim, M., Tong, A., Golshani, A., Cagney, G., Canadien, V., Richards, D.P., Greenblatt, J., Methylation of histone h3 by set2 in saccharomyces cerevisiae is linked to transcriptional elongation by rna polymerase ii (2003) Mol Cell Biol, 23 (12), pp. 4207-4218 
504 |a Cramer, P., Pesce, C.G., Baralle, F.E., Kornblihtt, A.R., Functional association between promoter structure and transcript alternative splicing (1997) Proc Natl Acad Sci U S A, 94 (21), pp. 11456-11460 
504 |a Cramer, P., Caceres, J.F., Cazalla, D., Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer (1999) Mol Cell, 4 (2), pp. 251-258 
504 |a Auboeuf, D., Honig, A., Berget, S.M., O'Malley, B.W., Coordinate regulation of transcription and splicing by steroid receptor coregulators (2002) Science, 298 (5592), pp. 416-419 
504 |a Pagani, F., Stuani, C., Zuccato, E., Kornblihtt, A.R., Baralle, F.E., Promoter architecture modulates CFTR exon 9 skipping (2003) J Biol Chem, 278 (3), pp. 1511-1517 
504 |a Robson-Dixon, N.D., Garcia-Blanco, M.A., MAZ elements alter transcription elongation and silencing of the fibroblast growth factor receptor 2 exon IIIb (2004) J Biol Chem, 279 (28), pp. 29075-29084 
504 |a Nogues, G., Kadener, S., Cramer, P., Bentley, D., Kornblihtt, A.R., Transcriptional activators differ in their abilities to control alternative splicing (2002) J Biol Chem, 277 (45), pp. 43110-43114 
504 |a Rosonina, E., Bakowski, M.A., McCracken, S., Blencowe, B.J., Transcriptional activators control splicing and 30-end cleavage levels (2003) J Biol Chem, 278 (44), pp. 43034-43040 
504 |a Auboeuf, D., Dowhan, D.H., Kang, Y.K., Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes (2004) Proc Natl Acad Sci U S A, 101 (8), pp. 2270-2274 
504 |a Auboeuf, D., Dowhan, D.H., Li, X., CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing (2004) Mol Cell Biol, 24 (1), pp. 442-453 
504 |a Kotovic, K.M., Lockshon, D., Boric, L., Neugebauer, K.M., Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast (2003) Mol Cell Biol, 23 (16), pp. 5768-5779 
504 |a Lacadie, S.A., Rosbash, M., Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:50ss base pairing in yeast (2005) Mol Cell, 19 (1), pp. 65-75 
504 |a Gornemann, J., Kotovic, K.M., Hujer, K., Neugebauer, K.M., Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex (2005) Mol Cell, 19 (1), pp. 53-63 
504 |a Listerman, I., Sapra, A.K., Neugebauer, K.M., Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells (2006) Nat Struct Mol Biol, 13 (9), pp. 815-822 
504 |a Lai, M.C., Teh, B.H., Tarn, W.Y., A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing (1999) J Biol Chem, 274 (17), pp. 11832-11841 
504 |a Monsalve, M., Wu, Z., Adelmant, G., Puigserver, P., Fan, M., Spiegelman, B.M., Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1 (2000) Mol Cell, 6 (2), pp. 307-316 
504 |a Guillouf, C., Gallais, I., Moreau-Gachelin, F., Spi-1/PU.1 oncoprotein affects splicing decisions in a promoter binding-dependent manner (2006) J Biol Chem, 281 (28), pp. 19145-19155 
504 |a Davies, R.C., Calvio, C., Bratt, E., Larsson, S.H., Lamond, A.I., Hastie, N.D., WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes (1998) Genes Dev, 12 (20), pp. 3217-3225 
504 |a Nayler, O., Stratling, W., Bourquin, J.P., SAF-B protein couples transcription and premRNA splicing to SAR/MAR elements (1998) Nucleic Acids Res, 26 (15), pp. 3542-3549 
504 |a Goldstrohm, A.C., Albrecht, T.R., Sune, C., Bedford, M.T., Garcia-Blanco, M.A., The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1 (2001) Mol Cell Biol, 21 (22), pp. 7617-7628 
504 |a Lin, K.T., Lu, R.M., Tarn, W.Y., The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo (2004) Mol Cell Biol, 24 (20), pp. 9176-9185 
504 |a Yuryev, A., Patturajan, M., Litingtung, Y., The C-Terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins (1996) Proc Natl Acad Sci U S A, 93 (14), pp. 6975-6980 
504 |a Young, J.I., Hong, E.P., Castle, J.C., Regulation of RNA splicing by the methylationdependent transcriptional repressor methyl-CpG binding protein 2 (2005) Proc Natl Acad Sci U S A., 102 (49), pp. 17551-17558 
504 |a Millhouse, S., Manley, J.L., The C-Terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein (2005) Mol Cell Biol, 25 (2), pp. 533-544 
504 |a Sato, S., Tomomori-Sato, C., Parmely, T.J., A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology (2004) MolCell, 14 (5), pp. 685-691 
504 |a Eperon, L.P., Graham, I.R., Griffiths, A.D., Eperon, I.C., Effects of rna secondary structure on alternative splicing of pre-mrna: Is folding limited to a region behind the transcribing rna polymerase (1988) Cell, 54 (3), pp. 393-401 
504 |a Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J., Smith, C.W., Co-Transcriptional commitment to alternative splice site selection (1998) Nucleic Acids Res, 26 (24), pp. 5568-5572 
504 |a Kadener, S., Cramer, P., Nogues, G., Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing (2001) EMBO J, 20 (20), pp. 5759-5768 
504 |a Kadener, S., Fededa, J.P., Rosbash, M., Kornblihtt, A.R., Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation (2002) Proc Natl Acad Sci U S A, 99 (12), pp. 8185-8190 
504 |a Nogues, G., Munoz, M.J., Kornblihtt, A.R., Influence of polymerase II processivity on alternative splicing depends on splice site strength (2003) J Biol Chem, 278 (52), pp. 52166-52171 
504 |a De La Mata, M., Alonso, C.R., Kadener, S., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol Cell, 12 (2), pp. 525-532 
504 |a Howe, K.J., Kane, C.M., Ares Jr., M., Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae (2003) RNA, 9 (8), pp. 993-1006 
504 |a Lorincz, M.C., Dickerson, D.R., Schmitt, M., Groudine, M., Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells (2004) Nat Struct Mol Biol, 11 (11), pp. 1068-1075 
504 |a Batsche, E., Yaniv, M., Muchardt, C., The human SWI/SNF subunit Brm is a regulator of alternative splicing (2006) Nat Struct Mol Biol, 13 (1), pp. 22-29 
504 |a Kornblihtt, A.R., Chromatin, transcript elongation and alternative splicing (2006) Nat Struct Mol Biol, 13 (1), pp. 5-7 
504 |a Schor, I.E., Rascovan, N., Pelisch, F., Alló, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc Natl Acad Sci USA, 106 (11), pp. 4325-4330 
504 |a Alló, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., De La Mata, M., Agirre, E., Kornblihtt, A.R., Control of alternative splicing through siRNA-mediated transcriptional gene silencing (2009) Nat Struct Mol Biol, 16 (7), pp. 717-724 
504 |a Suzuki, K., Juelich, T., Lim, H., Ishida, T., Watanebe, T., Cooper, D.A., Rao, S., Kelleher, A.D., Closed Chromatin architecture Is induced by an RNA Duplex targeting the HIV-1 promoter region (2008) J Biol Chem, 283, pp. 23353-23363 
504 |a Kim, D.H., Villeneuve, L.M., Morris, K.V., Rossi, J.J., Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells (2006) Nat Struct Mol Biol, 13, pp. 793-797 
504 |a Morris, K.V., Chan, S.W., Jacobsen, S.E., Looney, D.J., Small interfering RNA-induced transcriptional gene silencing in human cells (2004) Science, 305, pp. 1289-1292 
504 |a Schwartz, S., Meshorer, E., Ast, G., Chromatin organization marks exon-intron structure (2009) Nat Struct Mol Biol, 16 (9), pp. 990-995 
504 |a Tilgner, H., Nikolaou, C., Althammer, S., Sammeth, M., Beato, M., Valcárcel, J., Guigó, R., Nucleosome positioning as a determinant of exon recognition (2009) Nat Struct Mol Biol, 16 (9), pp. 996-1001 
504 |a Kolosinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu, X.S., Ahringer, J., Differential chromatin marking of introns and expressed exons by H3K36me3 (2009) Nat Genet, 41 (3), pp. 376-381 
504 |a Yang, L., Embree, L.J., Hickstein, D.D., TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-Arginine proteins (2000) Mol Cell Biol, 20 (10), pp. 3345-3354 
520 3 |a The scenario of alternative splicing regulation is far more complex than the classical picture of a pre-mRNA being processed post-transcriptionally in more than one way. Introns are efficiently removed while transcripts are still being synthesized, supporting the idea of a co-transcriptional regulation of alternative splicing. Evidence of a functional coupling between splicing and transcription has recently emerged as it was observed that properties of one process may affect the outcome of the other. Co-transcriptionality is thought to improve splicing efficiency and kinetics by directing the nascent pre-mRNA into proper spliceosome assembly and favoring splicing factor recruitment. Two models have been proposed to explain the coupling of transcription and alternative splicing: in the recruitment model, promoters and pol II status affect the recruitment to the transcribing gene of splicing factors or bifunctional factors acting on both transcription and splicing; in the kinetic model, differences in the elongation rate of pol II would determine the timing in which splicing sites are presented, and thus the outcome of alternative splicing decisions. In the later model, chromatin structure has emerged as a key regulator. Although definitive evidence for transcriptionally coupled alternative splicing alterations in tumor development or cancer pathogenesis is still missing, many alternative splicing events altered in cancer might be subject to transcription-splicing coupling regulation. © Springer-Verlag Berlin Heidelberg 2013.  |l eng 
593 |a Laboratorio de Fisiologia y Biologia Molecular, Departmento de Fisiologia, Biologia Molecular y Celular, Universidad de Buenos Aires, Ciudad Universitaria PAB. II, 20 Piso, Buenos Aires 1428, Argentina 
690 1 0 |a ALTERNATIVE SPLICING 
690 1 0 |a CHROMATIN 
690 1 0 |a CO-TRANSCRIPTIONAL SPLICING 
690 1 0 |a KINETIC MODEL 
690 1 0 |a RNA POLYMERASE II-CTD 
690 1 0 |a TRANSCRIPTION-SPLICING COUPLING 
690 1 0 |a RNA POLYMERASE II 
690 1 0 |a CHROMATIN 
690 1 0 |a RNA POLYMERASE II 
690 1 0 |a RNA PRECURSOR 
690 1 0 |a ALTERNATIVE RNA SPLICING 
690 1 0 |a ARTICLE 
690 1 0 |a CANCER GENETICS 
690 1 0 |a CARBOXY TERMINAL SEQUENCE 
690 1 0 |a CHEMICAL REACTION KINETICS 
690 1 0 |a CHROMATIN STRUCTURE 
690 1 0 |a EXON 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a HISTONE METHYLATION 
690 1 0 |a HUMAN 
690 1 0 |a INTRACELLULAR SIGNALING 
690 1 0 |a INTRON 
690 1 0 |a MOLECULAR INTERACTION 
690 1 0 |a MOLECULAR MODEL 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN SECONDARY STRUCTURE 
690 1 0 |a RNA TRANSLATION 
690 1 0 |a TRANSCRIPTION ELONGATION 
690 1 0 |a TRANSCRIPTION REGULATION 
690 1 0 |a CHROMATIN 
690 1 0 |a GENETIC TRANSCRIPTION 
690 1 0 |a RNA SPLICING 
690 1 0 |a ALTERNATIVE SPLICING 
690 1 0 |a CHROMATIN 
690 1 0 |a HUMANS 
690 1 0 |a RNA POLYMERASE II 
690 1 0 |a RNA PRECURSORS 
690 1 0 |a RNA SPLICING 
690 1 0 |a TRANSCRIPTION, GENETIC 
700 1 |a Gómez Acuña, L.I. 
700 1 |a Kornblihtt, A.R. 
700 1 |a Wu J.Y. 
773 0 |d 2013  |g v. 158  |h pp. 1-24  |p Cancer Treat. Res.  |x 09273042  |z 9783642316586  |t Cancer Treatment and Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891753215&doi=10.1007%2f978-3-642-31659-3_1&partnerID=40&md5=8ac79bf24df36c359fd023b98d1826ef  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-3-642-31659-3_1  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09273042_v158_n_p1_Schor  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09273042_v158_n_p1_Schor  |y Registro en la Biblioteca Digital 
961 |a paper_09273042_v158_n_p1_Schor  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85075