Robust functional principal component analysis

When dealing with multivariate data robust principal component analysis (PCA), like classical PCA, searches for directions with maximal dispersion of the data projected on it. Instead of using the variance as a measure of dispersion, a robust scale estimator sn may be used in the maximization proble...

Descripción completa

Detalles Bibliográficos
Autor principal: Bali, Juan Lucas
Otros Autores: Boente, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer International Publishing 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07264caa a22006977a 4500
001 PAPER-23993
003 AR-BaUEN
005 20241002110739.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85030637585 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bali, Juan Lucas 
245 1 0 |a Robust functional principal component analysis 
260 |b Springer International Publishing  |c 2014 
270 1 0 |m Bali, J.L.; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICETArgentina; email: lbali@dm.uba.ar 
504 |a Bali, J.L., Boente, G., Tyler, D.E., Wang, J.L., Robust functional principal components: A projection-pursuit approach (2011) Ann. Stat., 39, pp. 2852-2882 
504 |a Boente, G., Fraiman, R., Discussion on robust principal component analysis for functional data by N. Locantore, J. Marron, D. Simpson, N. Tripoli, J. Zhang and K. Cohen (1999) Test, 8, pp. 28-35 
504 |a Boente, G., Fraiman, R., Kernel-based functional principal components (2000) Stat. Prob. Lett., 48, pp. 335-345 
504 |a Croux, C., Filzmoser, P., Oliveira, M.R., Algorithms for projection-pursuit robust principal component analysis (2007) Chem. Intell. Lab. Syst., 87, pp. 218-225 
504 |a Croux, C., Ruiz-Gazen, A., A fast algorithm for robust principal components based on projection pursuit (1996) Compstat: Proceedings in Computational Statistics, pp. 211-217. , Prat, A. (ed.), Physica-Verlag, Heidelberg 
504 |a Croux, C., Ruiz-Gazen, A., High breakdown estimators for principal components: The projection-pursuit approach revisited (2005) J. Multivar. Anal., 95, pp. 206-226 
504 |a Cui, H., He, X., Ng, K.W., Asymptotic distribution of principal components based on robust dispersions (2003) Biometrika, 90, pp. 953-966 
504 |a Dauxois, J., Pousse, A., Romain, Y., Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference (1982) J. Multivar. Anal., 12, pp. 136-154 
504 |a Gervini, D., Robust functional estimation using the spatial median and spherical principal components (2008) Biometrika, 95, pp. 587-600 
504 |a Gervini, D., Detecting and handling outlying trajectories in irregularly sampled functional datasets (2009) Ann. Appl. Stat., 3, pp. 1758-1775 
504 |a Gervini, D., Outlier detection and trimmed estimation for general functional data (2012) Stat. Sin. 
504 |a Hall, P., Hosseini-Nasab, M., On properties of functional principal components analysis (2006) J. R. Stat. Soc. Ser. B, 68, pp. 109-126 
504 |a Hall, P., Müller, H.-G., Wang, J.-L., Properties of principal component methods for functional and longitudinal data analysis (2006) Ann. Stat., 34, pp. 1493-1517 
504 |a Hubert, M., Vandervieren, E., An adjusted boxplot for skewed distributions (2008) Comput. Stat. Data Anal., 52, pp. 5186-5201 
504 |a Hyndman, R.J., Ullah, S., Robust forecasting of mortality and fertility rates: A functional data approach (2007) Comput. Stat. Data Anal., 51, pp. 4942-4956 
504 |a Li, G., Chen, Z., Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo (1985) J. Am. Stat. Assoc., 80, pp. 759-766 
504 |a Locantore, N., Marron, J.S., Simpson, D.G., Tripoli, N., Zhang, J.T., Cohen, K.L., Robust principal components for functional data (With discussion) (1999) Test, 8, pp. 1-73 
504 |a Malfait, N., Ramsay, J.O., The historical functional linear model (2003) Can. J. Stat., 31, pp. 115-128 
504 |a Pezzulli, S.D., Silverman, B.W., Some properties of smoothed principal components analysis for functional data (1993) Comput. Stat., 8, pp. 1-16 
504 |a Rice, J., Silverman, B.W., Estimating the mean and covariance structure nonparametrically when the data are curves (1991) J. R. Stat. Soc. Ser. B, 53, pp. 233-243 
504 |a Sawant, P., Billor, N., Shin, H., Functional outlier detection with robust functional principal component analysis (2011) Comput. Stat., 27, pp. 83-102 
504 |a Silverman, B.W., Smoothed functional principal components analysis by choice of norm (1996) Ann. Stat., 24, pp. 1-24 
504 |a Sun, Y., Genton, M.G., Functional boxplots (2011) J. Comput. Graph. Stat., 20, pp. 316-334 
504 |a Tyler, D., A note on multivariate location and scatter statistics for sparse data sets (2010) Stat. Prob. Lett., 80, pp. 1409-1413 
504 |a Yao, F., Lee, T.C.M., Penalized spline models for functional principal component analysis (2006) J. R. Stat. Soc. Ser. B, 68, pp. 3-25 
504 |a Zhang, J.-T., Chen, J., Statistical inferences for functional data (2007) Ann. Stat., 35, pp. 1052-1079 
506 |2 openaire  |e Política editorial 
520 3 |a When dealing with multivariate data robust principal component analysis (PCA), like classical PCA, searches for directions with maximal dispersion of the data projected on it. Instead of using the variance as a measure of dispersion, a robust scale estimator sn may be used in the maximization problem. In this paper, we review some of the proposed approaches to robust functional PCA including one which adapts the projection pursuit approach to the functional data setting. © 2014, Springer International Publishing Switzerland.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, PIP 216 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PICT 821 
536 |a Detalles de la financiación: Acknowledgements This research was partially supported by Grants 276 from the Universidad de Buenos Aires, PIP 216 from CONICET and PICT 821 from ANPCYT at Buenos Aires, Argentina. The authors wish to thank three anonymous referees for valuable comments which led to an improved version of the original paper. 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina 
690 1 0 |a COVARIANCE OPERATOR 
690 1 0 |a FUNCTIONAL DATA ANALYSIS 
690 1 0 |a PRINCIPAL DIRECTION 
690 1 0 |a ROBUST ESTIMATOR 
690 1 0 |a SCHMIDT OPERATOR 
700 1 |a Boente, G. 
773 0 |d Springer International Publishing, 2014  |h pp. 41-54  |p Stud. Theo. Appl. Stat. Sel. Papers Stat. Soc.  |x 21947767  |t Studies in Theoretical and Applied Statistics, Selected Papers of the Statistical Societies 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030637585&doi=10.1007%2f978-3-319-05323-3_4&partnerID=40&md5=2f34aaf25daf9b207898f73c2b9ef11b  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-3-319-05323-3_4  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_21947767_v_n_p41_Bali  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21947767_v_n_p41_Bali  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_21947767_v_n_p41_Bali  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion