A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer

A flexible, anisotropic and portable stress sensor (logarithmic reversible response between 40-350 kPa) was fabricated, in which i) the sensing material, ii) the electrical contacts and iii) the encapsulating material, were based on polydimethylsiloxane (PDMS) composites. The sensing material is a s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mietta, J.L
Otros Autores: Jorge, Guillermo Antonio, Martín Negri, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Institute of Physics Publishing 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15358caa a22011417a 4500
001 PAPER-23824
003 AR-BaUEN
005 20250519101418.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84904437945 
030 |a SMSTE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Mietta, J.L. 
245 1 2 |a A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer 
260 |b Institute of Physics Publishing  |c 2014 
504 |a Li, W.H., Zhang, X.Z., Du, H., Visakh, P.M., Thomas, S., Chandra, A.K., Mathew, A.P., Magnetorheological elastomers and their applications Advances in Elastomers i (2013) Advanced Structured Materials, pp. 357-374 
504 |a Danas, K., Kankanala, S.V., Triantafyllidis, N., Experiments and modeling of iron-particle-filled magnetorheological elastomers (2012) J. Mech. Phys. Solids, 60, pp. 120-138. , 10.1016/j.jmps.2011.09.006 0022-5096 
504 |a Bica, I., Liu, Y.D., Choi, H.J., Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer (2012) Colloid Polym. Sci., 290, pp. 1115-1122. , 10.1007/s00396-012-2627-9 
504 |a Varga, Z., Filipcsei, G., Zrinyi, M., Magnetic field sensitive functional elastomers with tuneable elastic modulus (2006) Polymer, 47 (1), pp. 227-233. , DOI 10.1016/j.polymer.2005.10.139, PII S0032386105016125 
504 |a Ivaneyko, D., Toshchevikov, V.P., Saphiannikova, M., Heinrich, G., Magneto-sensitive elastomers in a homogeneous magnetic field: A regular rectangular lattice model (2011) Macromol. Theory Simul., 20, pp. 411-424. , 10.1002/mats.v20.6 1022-1344 
504 |a Shahrivar, K., De Vicente, J., Thermoresponsive polymer-based magneto-rheological (MR) composites as a bridge between MR fluids and MR elastomers (2013) Soft Matter, 9, pp. 11451-11456. , 10.1039/c3sm52397g 1744-683X 
504 |a Stepanov, G.V., Abramchuk, S.S., Grishin, D.A., Nikitin, L.V., Kramarenko, E.Yu., Khokhlov, A.R., Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers (2007) Polymer, 48 (2), pp. 488-495. , DOI 10.1016/j.polymer.2006.11.044, PII S0032386106012912 
504 |a Varga, Z., Filipcsei, G., Zrinyi, M., Magnetic field sensitive functional elastomers with tuneable elastic modulus (2006) Polymer, 47 (1), pp. 227-233. , DOI 10.1016/j.polymer.2005.10.139, PII S0032386105016125 
504 |a Keshoju, K., Sun, L., Mechanical characterization of magnetic nanowire-polydimethylsiloxane composites (2009) J. Appl. Phys., 105. , 10.1063/1.3068173 023515 
504 |a Yang, I.-H., Yoon, J.-H., Jeong, J.-E., Jeong, U.-C., Kim, J.-S., Chung, K.H., Oh, J.-E., Magnetic-field-dependent shear modulus of a magnetorheological elastomer based on natural rubber (2013) J. Korean Phys. Soc., 62, pp. 220-228. , 10.3938/jkps.62.220 0374-4884 
504 |a Kchit, N., Bossis, G., Piezoresistivity of magnetorheological elastomers (2008) Journal of Physics Condensed Matter, 20 (20), p. 204136. , DOI 10.1088/0953-8984/20/20/204136, PII S0953898408770073 
504 |a Koo, J.-H., Khan, F., Jang, D.-D., Jung, H.-J., Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings (2010) Smart Mater. Struct., 19. , 10.1088/0964-1726/19/11/115026 0964-1726 117002 
504 |a Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G., Negri, R.M., Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature (2012) Langmuir, 28, pp. 6985-6996. , 10.1021/la204823k 
504 |a Mietta, J.L., Jorge, G., Perez, O.E., Maeder, T., Negri, R.M., Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity (2013) Sensors Actuators, 192, pp. 34-41. , 10.1016/j.sna.2012.12.018 0924-4247 A 
504 |a Denver, H., Heiman, T., Martin, E., Gupta, A., Borca-Tasciuc, D.-A., Fabrication of polydimethylsiloxane composites with nickel nanoparticle and nanowire fillers and study of their mechanical and magnetic properties (2009) J. Appl. Phys., 106. , 10.1063/1.3224966 064909 
504 |a Landa, R.A., Antonel, P.S., Ruiz, M.M., Perez, O.E., Butera, A., Jorge, G., Oliveira, C.L.P., Negri, R.M., Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains (2013) J. Appl. Phys., 114. , 10.1063/1.4839735 213912 
504 |a Yang, J., Gong, X., Zong, L., Peng, C., Xuan, S., Silicon carbide-strengthened magnetorheological elastomer: Preparation and mechanical property (2013) Polym. Eng. Sci., 53, pp. 2615-2623. , 10.1002/pen.v53.12 0032-3888 
504 |a Bica, I., Anitas, E.M., Bunoiu, M., Vatzulik, B., Juganaru, I., Hybrid magnetorheological elastomer: Influence of magnetic field and compression pressure on its electrical conductivity (2014) J. Ind. Eng. Chem., , 10.1016/j.jiec.2013.12.102 0095-9014 
504 |a Stoll, A., Mayer, M., Monkman, G.J., Shamonin, M., Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response (2014) J. Appl. Polym. Sci., 131. , 10.1002/app.39793 39793 
504 |a Godoy, M., Moreno, A.J., Jorge, G.A., Ferrari, H.J., Antonel, P.S., Mietta, J.L., Ruiz, M., Bekeris, V., Micrometric periodic assembly of magnetotactic bacteria and magnetic nanoparticles using audio tapes (2012) J. Appl. Phys., 111. , 10.1063/1.3681380 044905 
504 |a Butera, A., Álvarez, N., Jorge, G., Ruiz, M.M., Mietta, J.L., Negri, R.M., Microwave response of anisotropic magnetorheological elastomers: Model and experiments (2012) Phys. Rev., 86. , 10.1103/PhysRevB.86.144424 B 144424 
504 |a Auner, N., Weis, J., (2008) Organosilicon Chemistry III: From Molecules to Materials 
504 |a Efimenko, K., Wallace, W.E., Genzer, J., Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment (2002) Journal of Colloid and Interface Science, 254 (2), pp. 306-315. , DOI 10.1006/jcis.2002.8594 
504 |a Eita, M., El Sayed, R., Muhammed, M., Optical properties of thin films of zinc oxide quantum dots and polydimethylsiloxane: UV-blocking and the effect of cross-linking (2012) J. Colloid Interface Sci., 387, pp. 135-140. , 10.1016/j.jcis.2012.07.065 
504 |a Esteves, A.C.C., Brokken-Zijp, J., Laven, J., Huinink, H.P., Reuvers, N.J.W., Van, M.P., De With, G., Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed (2009) Polymer, 50, pp. 3955-3966. , 10.1016/j.polymer.2009.06.022 
504 |a Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A., Perez, O., A model for the dependence of the electrical conductance with the applied stress in insulating-conducting composites (2010) J. Appl. Phys., 107. , 10.1063/1.3410799 113703 
504 |a Ruiz, M.M., Mietta, J.L., Soledad Antonel, P., Pérez, O.E., Martín Negri, R., Jorge, G., Structural and magnetic properties of Fe2-x CoSm x O4 - Nanoparticles and Fe2-x CoSm x O4 - PDMS magnetoelastomers as a function of Sm content (2013) J. Magn. Magn. Mater., 327, pp. 11-19. , 10.1016/j.jmmm.2012.09.020 0304-8853 
504 |a Liu, C.-X., Choi, J.-W., Strain-dependent resistance of PDMS and carbon nanotubes composite microstructures (2010) IEEE Trans. Nanotechnol., 9, pp. 590-595. , 10.1109/TNANO.2010.2060350 1536-125X 
504 |a Shih, W.-P., Tsao, L.-C., Lee, C.-W., Cheng, M.-Y., Chang, C., Yang, Y.-J., Fan, K.-C., Flexible temperature sensor array based on a graphite- polydimethylsiloxane composite (2010) Sensors, 10, pp. 3597-3610. , 10.3390/s100403597 0746-9462 
504 |a Lu, J., Lu, M., Bermak, A., Lee, Y.-K., Study of piezoresistance effect of carbon nanotube-PDMS composite materials for nanosensors (2007) 7th IEEE Conf. on Nanotechnology (2007), pp. 1240-1243 
504 |a Coquelle, E., Bossis, G., Szabo, D., Giulieri, F., Micromechanical analysis of an elastomer filled with particles organized in chain-like structure (2006) Journal of Materials Science, 41 (18), pp. 5941-5953. , DOI 10.1007/s10853-006-0329-8 
504 |a Coquelle, E., Bossis, G., Mullins effect in elastomers filled with particles aligned by a magnetic field (2006) International Journal of Solids and Structures, 43 (25-26), pp. 7659-7672. , DOI 10.1016/j.ijsolstr.2006.03.020, PII S002076830600093X 
504 |a Schmoller, K.M., Bausch, A.R., Similar nonlinear mechanical responses in hard and soft materials (2013) Nat. Mater., 12, pp. 278-281. , 10.1038/nmat3603 
504 |a Diani, J., Fayolle, B., Gilormini, P., A review on the Mullins effect (2009) Eur. Polym. J., 45, pp. 601-612. , 10.1016/j.eurpolymj.2008.11.017 0014-3057 
504 |a Sreeprasad, T.S., Rodriguez, A.A., Colston, J., Graham, A., Shishkin, E., Pallem, V., Berry, V., Electron-tunneling modulation in percolating network of graphene quantum dots: Fabrication, phenomenological understanding, and humidity/pressure sensing applications (2013) Nano Lett., 13, pp. 1757-1763. , 10.1021/nl402278y 
504 |a Shehzad, K., Zha, J.-W., Zhang, Z.-F., Yuan, J.-K., Dang, Z.-M., Piezoresistive behavior of electrically conductive carbon fillers/thermoplastic elastomer nanocomposites (2013) J. Adv. Phys., 2, pp. 70-74. , 10.1166/jap.2013.1038 
504 |a Kchit, N., Bossis, G., Electrical resistivity mechanism in magnetorheological elastomer (2009) J. Phys. D: Appl. Phys., 42 (10). , 10.1088/0022-3727/42/10/105505 0022-3727 105505 
504 |a Zavickis, J., Knite, M., Podins, G., Linarts, A., Orlovs, R., Polyisoprene-nanostructured carbon composite - A soft alternative for pressure sensor application (2011) Sensors Actuators, 171, pp. 38-42. , 10.1016/j.sna.2011.05.035 0924-4247 A 
504 |a Bica, I., Liu, Y.D., Choi, H.J., Physical characteristics of magnetorheological suspensions and their applications (2013) J. Ind. Eng. Chem., 19, pp. 394-406. , 10.1016/j.jiec.2012.10.008 0095-9014 
504 |a Bica, I., Liu, Y.D., Choi, H.J., Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer (2012) Colloid Polym. Sci., 290, pp. 1115-1122. , 10.1007/s00396-012-2627-9 
504 |a Yu, M., Ju, B., Fu, J., Liu, X., Yang, Q., Influence of composition of carbonyl iron particles on dynamic mechanical properties of magnetorheological elastomers (2012) J. Magn. Magn. Mater., 324, pp. 2147-2152. , 10.1016/j.jmmm.2012.02.033 0304-8853 
504 |a Dong, X., Ma, N., Ou, J., Qi, M., Predicating magnetorheological effect of magnetorheological elastomers under normal pressure (2013) J. Phys.: Conf. Ser., 412 (1). , 10.1088/1742-6596/412/1/012035 1742-6596 012035 
504 |a Qiao, X., Lu, X., Li, W., Chen, J., Gong, X., Yang, T., Li, W., Chen, X., Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix (2012) Smart Mater. Struct., 21 (11). , 10.1088/0964-1726/21/11/115028 0964-1726 115028 
504 |a Lundberg, B., Sundqvist, B., Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment: Applications as a pressure and gas concentration transducer (1986) J. Appl. Phys., 60, pp. 1074-1079. , 10.1063/1.337401 
504 |a Martin, J.E., Anderson, R.A., Odinek, J., Adolf, D., Williamson, J., Controlling percolation in field-structured particle composites: Observations of giant thermoresistance, piezoresistance, and chemiresistance (2003) Phys. Rev., 67. , 10.1103/PhysRevB.67.014421 B 094207 
504 |a Kchit, N., Lancon, P., Bossis, G., Thermoresistance and giant magnetoresistance of magnetorheological elastomers (2009) J. Phys. D: Appl. Phys., 42. , 10.1088/0022-3727/42/10/105505 105506 
504 |a Lv, P., Wang, Z., Hu, Y., Yu, M., Study on effect of polydimethylsiloxane in intumescent flame retardant polypropylene (2009) J. Polym. Res., 16, pp. 81-89. , 10.1007/s10965-008-9205-3 1022-9760 
506 |2 openaire  |e Política editorial 
520 3 |a A flexible, anisotropic and portable stress sensor (logarithmic reversible response between 40-350 kPa) was fabricated, in which i) the sensing material, ii) the electrical contacts and iii) the encapsulating material, were based on polydimethylsiloxane (PDMS) composites. The sensing material is a slide of an anisotropic magnetorheological elastomer (MRE), formed by dispersing silver-covered magnetite particles (Fe 3 O 4 @Ag) in PDMS and by curing in the presence of a uniform magnetic field. Thus, the MRE is a structure of electrically conducting pseudo-chains (needles) aligned in a specific direction, in which electrical conductivity increases when stress is exclusively applied in the direction of the needles. Electrical conductivity appears only between contact points that face each other at both sides of the MRE slide. An array of electrical contacts was implemented based on PDMS-silver paint metallic composites. The array was encapsulated with PDMS. Using Fe 3 O 4 superparamagnetic nanoparticles also opens up possibilities for a magnetic field sensor, due to the magnetoresistance effects. © 2014 IOP Publishing Ltd.  |l eng 
593 |a Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, ́tica y Química Física, Universidad de Buenos Aires, Argentina 
593 |a Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina 
690 1 0 |a ELECTRICALLY CONDUCTIVE COMPOSITE 
690 1 0 |a FLEXIBLE STRESS SENSOR 
690 1 0 |a PIEZORESISTIVITY 
690 1 0 |a STRUCTURED MAGNETOELASTOMER COMPOSITES 
690 1 0 |a ANISOTROPY 
690 1 0 |a ELECTRIC CONDUCTIVITY 
690 1 0 |a ELECTRIC CONTACTS 
690 1 0 |a METALS 
690 1 0 |a MICROCHANNELS 
690 1 0 |a NEEDLES 
690 1 0 |a SENSORS 
690 1 0 |a SILICONES 
690 1 0 |a STRESS MEASUREMENT 
690 1 0 |a ELECTRICALLY CONDUCTIVE COMPOSITES 
690 1 0 |a MAGNETORESISTANCE EFFECTS 
690 1 0 |a MAGNETORHEOLOGICAL ELASTOMERS 
690 1 0 |a PIEZORESISTIVITY 
690 1 0 |a POLYDIMETHYLSILOXANE PDMS 
690 1 0 |a STRESS SENSOR 
690 1 0 |a SUPERPARAMAGNETIC NANOPARTICLES 
690 1 0 |a UNIFORM MAGNETIC FIELDS 
690 1 0 |a SILVER 
700 1 |a Jorge, Guillermo Antonio 
700 1 |a Martín Negri, R. 
773 0 |d Institute of Physics Publishing, 2014  |g v. 23  |k n. 8  |p Smart Mater Struct  |x 09641726  |t Smart Materials and Structures 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904437945&doi=10.1088%2f0964-1726%2f23%2f8%2f085026&partnerID=40&md5=2b1a8b8ada35fb8b723222c544bc4d17  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/0964-1726/23/8/085026  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09641726_v23_n8_p_Mietta  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09641726_v23_n8_p_Mietta  |y Registro en la Biblioteca Digital 
961 |a paper_09641726_v23_n8_p_Mietta  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84777