Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas

Prolactin-secreting adenomas are the most frequent type among pituitary tumors, and pharmacological therapy with dopamine agonists remains the mainstay of treatment. But some adenomas are resistant, and a decrease in the number or function of dopamine D2 receptors (D2Rs) has been described in these...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Luque, G.M
Otros Autores: Perez-Millán, M.I, Ornstein, A.M, Cristina, C., Becu-Villalobos, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16156caa a22013937a 4500
001 PAPER-23674
003 AR-BaUEN
005 20230518205524.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79956199678 
024 7 |2 cas  |a aflibercept, 845771-78-0, 862111-32-8; dopamine, 51-61-6, 62-31-7; prolactin, 12585-34-1, 50647-00-2, 9002-62-4; vasculotropin, 127464-60-2; Angiogenesis Inhibitors; Antibodies, Monoclonal; Prolactin, 9002-62-4; Receptors, Dopamine D2; Recombinant Fusion Proteins; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-1, 2.7.10.1; aflibercept 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPETA 
100 1 |a Luque, G.M. 
245 1 0 |a Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas 
260 |c 2011 
270 1 0 |m Becu-Villalobos, D.; Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina; email: dbecu@ibyme.conicet.org.ar 
506 |2 openaire  |e Política editorial 
504 |a Asa, S.L., Kelly, M.A., Grandy, D.K., Low, M.J., Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice (1999) Endocrinology, 140, pp. 5348-5355 
504 |a Banerjee, S.K., Sarkar, D.K., Weston, A.P., De A, Campbell, D.R., Over expression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis (1997) Carcinogenesis, 18 (6), pp. 1155-1161. , DOI 10.1093/carcin/18.6.1155 
504 |a Banerjee, S.K., Zoubine, M.N., Tran, T.M., Weston, A.P., Campbell, D.R., Overexpression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells (2000) Int J Oncol, 16, pp. 253-260 
504 |a Basu, S., Nagy, J.A., Pal, S., Vasile, E., Eckelhoefer, I.A., Bliss, V.S., Manseau, E.J., Mukhopadhyay, D., The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor (2001) Nature Medicine, 7 (5), pp. 569-574. , DOI 10.1038/87895 
504 |a Batchelor, T.T., Sorensen, A.G., Di, T.E., Zhang, W.-T., Duda, D.G., Cohen, K.S., Kozak, K.R., Jain, R.K., AZD2171, a Pan-VEGF Receptor Tyrosine Kinase Inhibitor, Normalizes Tumor Vasculature and Alleviates Edema in Glioblastoma Patients (2007) Cancer Cell, 11 (1), pp. 83-95. , DOI 10.1016/j.ccr.2006.11.021, PII S1535610806003709 
504 |a Ben-Jonathan, N., Hnasko, R., Dopamine as a prolactin (PRL) inhibitor (2001) Endocrine Reviews, 22 (6), pp. 724-763. , DOI 10.1210/er.22.6.724 
504 |a Burris III, H., Rocha-Lima, C., New therapeutic directions for advanced pancreatic cancer: Targeting the epidermal growth factor and vascular endothelial growth factor pathways (2008) Oncologist, 13, pp. 289-298 
504 |a Caccavelli, L., Morange-Ramos, I., Kordon, C., Jaquet, P., Enjalbert, A., Alteration of Gα subunits mRNA levels in bromocriptine resistant prolactinomas (1996) Journal of Neuroendocrinology, 8 (10), pp. 737-746 
504 |a Crawford, Y., Ferrara, N., VEGF inhibition: Insights from preclinical and clinical studies (2009) Cell Tissue Res, 335, pp. 261-269 
504 |a Cristina, C., Diaz-Torga, G., Baldi, A., Gongora, A., Rubinstein, M., Low, M.J., Becu-Villalobos, D., Increased pituitary vascular endothelial growth factor-A in dopaminergic D2 receptor knockout female mice (2005) Endocrinology, 146 (7), pp. 2952-2962. , http://endo.endojournals.org/cgi/reprint/146/7/2952, DOI 10.1210/en.2004-1445 
504 |a Cristina, C., Garcia-Tornadu, I., Diaz-Torga, G., Rubinstein, M., Low, M.J., Becu-Villalobos, D., Dopaminergic D2 receptor knockout mouse: An animal model of prolactinoma (2006) Frontiers of Hormone Research, 35, pp. 50-63. , DOI 10.1159/000094308, Pituitary Today: Molecular, Physiological and Clinical Aspects 
504 |a Cristina, C., Perez-Millan, M.I., Luque, G., Dulce, R.A., Sevlever, G., Berner, S.I., Becu-Villalobos, D., VEGF and CD31 association in pituitary adenomas (2010) Endocr Pathol, 21, pp. 154-160 
504 |a Di Ieva, A., Grizzi, F., Gaetani, P., Goglia, U., Tschabitscher, M., Mortini, P., Rodriguez Y Baena, R., Euclidean and fractal geometry of microvascular networks in normal and neoplastic pituitary tissue (2008) Neurosurg Rev, 31, pp. 271-281 
504 |a Ferrara, N., Pathways mediating VEGF-independent tumor angiogenesis (2010) Cytokine Growth Factor Rev, 21, pp. 21-26 
504 |a Folkman, J., Shing, Y., Angiogenesis (1992) J Biol Chem, 267, pp. 10931-10934 
504 |a Fong, T.A.T., Shawver, L.K., Sun, L., Tang, C., App, H., Powell, T.J., Kim, Y.H., McMahon, G., SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types (1999) Cancer Research, 59 (1), pp. 99-106 
504 |a Gerber, H.-P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B.A., Dixit, V., Ferrara, N., Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway: Requirement for Flk-1/KDR activation (1998) Journal of Biological Chemistry, 273 (46), pp. 30336-30343. , DOI 10.1074/jbc.273.46.30336 
504 |a Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Van Oosterom, A.T., De Bruijn, E.A., Vascular endothelial growth factor and angiogenesis (2004) Pharmacological Reviews, 56 (4), pp. 549-580. , DOI 10.1124/pr.56.4.3 
504 |a Jugenburg, M., Kovacs, K., Stefaneanu, L., Scheithauer, B.W., Vasculature in nontumorous hypophyses, pituitary adenomas, and carcinomas: A quantitative morphologic study (1995) Endocr Pathol, 6, pp. 115-124 
504 |a Kelly, M.A., Rubinstein, M., Asa, S.L., Zhang, G., Saez, C., Bunzow, J.R., Allen, R.G., Low, M.J., Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice (1997) Neuron, 19 (1), pp. 103-113. , DOI 10.1016/S0896-6273(00)80351-7 
504 |a Kerbel, R.S., Tumor angiogenesis (2008) N Engl J Med, 358, pp. 2039-2049 
504 |a Kim, K., Yoshida, D., Teramoto, A., Expression of hypoxia-inducible factor 1α and vascular endothelial growth factor in pituitary adenomas (2005) Endocrine Pathology, 16 (2), pp. 115-121. , DOI 10.1385/EP:16:2:115 
504 |a Komorowski, J., Jankewicz, J., Stepień, H., Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and soluble interleukin-2 receptor (sIL-2R) concentrations in peripheral blood as markers of pituitary tumours (2000) Cytobios, 101, pp. 151-159 
504 |a Korsisaari, N., Ross, J., Wu, X., Kowanetz, M., Pal, N., Hall, L., Eastham-Anderson, J., Ferrara, N., Blocking vascular endothelial growth factor-A inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1 (2008) Clinical Cancer Research, 14 (1), pp. 249-258. , http://clincancerres.aacrjournals.org/cgi/reprint/14/1/249, DOI 10.1158/1078-0432.CCR-07-1552 
504 |a Liang, W.C., Wu, X., Peale, F.V., Lee, C.V., Meng, Y.G., Gutierrez, J., Fu, L., Ferrara, N., Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF (2006) J Biol Chem, 281, pp. 951-961 
504 |a Lloyd, R.V., Scheithauer, B.W., Kuroki, T., Vidal, S., Kovacs, K., Stefaneanu, L., Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas (1999) Endocr Pathol, 10, pp. 229-235 
504 |a Lohrer, P., Gloddek, J., Hopfner, U., Losa, M., Uhl, E., Pagotto, U., Stalla, G.K., Renner, U., Vascular endothelial growth factor production and regulation in rodent and human pituitary tumor cells in vitro (2001) Neuroendocrinology, 74 (2), pp. 95-105. , DOI 10.1159/000054675 
504 |a McCabe, C.J., Boelaert, K., Tannahill, L.A., Heaney, A.P., Stratford, A.L., Khaira, J.S., Hussain, S., Gittoes, N.J., Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors (2002) J Clin Endocrinol Metab, 87, pp. 4238-4244 
504 |a Molitch, M.E., Pharmacologic resistance in prolactinoma patients (2005) Pituitary, 8, pp. 43-52 
504 |a Mori, J., Haisa, M., Naomoto, Y., Takaoka, M., Kimura, M., Yamatsuji, T., Notohara, K., Tanaka, N., Suppression of tumor growth and downregulation of platelet-derived endothelial cell growth factor/thymidine phosphorylase in tumor cells by angiogenesis inhibitor TNP-470 (2000) Japanese Journal of Cancer Research, 91 (6), pp. 643-650 
504 |a Ochoa, A.L., Mitchner, N.A., Paynter, C.D., Morris, R.E., Ben-Jonathan, N., Vascular endothelial growth factor in the rat pituitary: Differential distribution and regulation by estrogen (2000) Journal of Endocrinology, 165 (2), pp. 483-492 
504 |a Onofri, C., Carbia, N.A., Schaaf, L., Feirer, M., Lohrer, P., Stummer, W., Berner, S., Arzt, E., Estradiol Stimulates Vascular Endothelial Growth Factor and Interleukin-6 in Human Lactotroph and Lactosomatotroph Pituitary Adenomas (2004) Experimental and Clinical Endocrinology and Diabetes, 112 (1), pp. 18-23. , DOI 10.1055/s-2004-815722 
504 |a Pellegrini, I., Rasolonjanahary, R., Gunz, G., Bertrand, P., Delivet, S., Jedynak, C.P., Kordon, C., Enjalbert, A., Resistance to bromocriptine in prolactinomas (1989) Journal of Clinical Endocrinology and Metabolism, 69 (3), pp. 500-509 
504 |a Pizarro, C.B., Oliveira, M.C., Pereira-Lima, J.F., Leães, C.G., Kramer, C.K., Schuch, T., Barbosa-Coutinho, L.M., Ferreira, N.P., Evaluation of angiogenesis in 77 pituitary adenomas using endoglin as a marker (2009) Neuropathology, 29, pp. 40-44 
504 |a Reynolds, L.P., Grazul-Bilska, A.T., Redmer, D.A., Angiogenesis in the corpus luteum (2000) Endocrine, 12 (1), pp. 1-9 
504 |a Schechter, J., Ultrastructural changes in the capillary bed of human pituitary tumors (1972) Am J Pathol, 67, pp. 109-126 
504 |a Teunis, M.A., Kavelaars, A., Voest, E., Bakker, J.M., Ellenbroek, B.A., Cools, A.R., Heijnen, C.J., Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system (2002) FASEB J, 16, pp. 1465-1467 
504 |a Turner, H.E., Harris, A.L., Melmed, S., Wass, J.A.H., Angiogenesis in Endocrine Tumors (2003) Endocrine Reviews, 24 (5), pp. 600-632. , DOI 10.1210/er.2002-0008 
504 |a Vidal, S., Lloyd, R.V., Moya, L., Scheithauer, B.W., Kovacs, K., Expression and distribution of vascular endothelial growth factor receptor Flk-1 in the rat pituitary (2002) Journal of Histochemistry and Cytochemistry, 50 (4), pp. 533-540 
504 |a Wulff, C., Wiegand, S.J., Saunders, P.T.K., Scobie, G.A., Fraser, H.M., Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (Vascular Endothelial Growth Factor TrapA40) (2001) Endocrinology, 142 (7), pp. 3244-3254. , DOI 10.1210/en.142.7.3244 
520 3 |a Prolactin-secreting adenomas are the most frequent type among pituitary tumors, and pharmacological therapy with dopamine agonists remains the mainstay of treatment. But some adenomas are resistant, and a decrease in the number or function of dopamine D2 receptors (D2Rs) has been described in these cases. D2R knockout [Drd2(-/-)] mice have chronic hyperprolactinemia and pituitary hyperplasia and provide an experimental model for dopamine agonist-resistant prolactinomas. We described previously that disruption of D2Rs increases vascular endothelial growth factor (VEGF) expression. We therefore designed two strategies of antiangiogenesis using prolactinomas generated in Drd2(-/-) female mice: direct intra-adenoma mVEGF R1 (Flt-1)/Fc chimera (VEGF-TRAP) injection for 3 weeks [into subcutaneously transplanted pituitaries from Drd2(-/-) mice] and systemic VEGF neutralization with the specific monoclonal antibody G6-31. Both strategies resulted in substantial decrease of prolactin content and lactotrope area, and a reduction in tumor size was observed in in situ prolactinomas. There were significant decreases in vascularity, evaluated by cluster of differentiation molecule 31 vessel staining, and proliferation (proliferating cell nuclear antigen staining) in response to both anti-VEGF treatments. These data demonstrate that the antiangiogenic approach was effective in inhibiting the growth of in situ dopamine-resistant prolactinomas as well as in the transplanted adenomas. No differences in VEGF protein expression were observed after either anti-VEGF treatment, and, although serum VEGF was increased in G6-31-treated mice, pituitary activation of the VEGF receptor 2 signaling pathway was reduced. Our results indicate that, even though the role of angiogenesis in pituitary adenomas is contentious, VEGF might contribute to adequate vascular supply and represent a supplementary therapeutic target in dopamine agonist-resistant prolactinomas. Copyright © 2011 by The American Society for Pharmacology and Experimental Therapeutics.  |l eng 
593 |a Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina 
593 |a Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina 
690 1 0 |a AFLIBERCEPT 
690 1 0 |a DOPAMINE 
690 1 0 |a DOPAMINE 2 RECEPTOR 
690 1 0 |a MONOCLONAL ANTIBODY 
690 1 0 |a MONOCLONAL ANTIBODY G6-31 
690 1 0 |a PROLACTIN 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a VASCULOTROPIN 
690 1 0 |a VASCULOTROPIN RECEPTOR 2 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ANTIANGIOGENIC ACTIVITY 
690 1 0 |a ARTICLE 
690 1 0 |a CANCER INHIBITION 
690 1 0 |a CANCER TRANSPLANTATION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a FEMALE 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROLACTINOMA 
690 1 0 |a PROTEIN BLOOD LEVEL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a TUMOR VASCULARIZATION 
690 1 0 |a ANGIOGENESIS INHIBITORS 
690 1 0 |a ANIMALS 
690 1 0 |a ANTIBODIES, MONOCLONAL 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a DOPAMINE 
690 1 0 |a FEMALE 
690 1 0 |a MICE 
690 1 0 |a MICE, INBRED C57BL 
690 1 0 |a MICE, KNOCKOUT 
690 1 0 |a MICROVESSELS 
690 1 0 |a NEOVASCULARIZATION, PATHOLOGIC 
690 1 0 |a PITUITARY GLAND 
690 1 0 |a PITUITARY NEOPLASMS 
690 1 0 |a PROLACTIN 
690 1 0 |a PROLACTINOMA 
690 1 0 |a RECEPTORS, DOPAMINE D2 
690 1 0 |a RECOMBINANT FUSION PROTEINS 
690 1 0 |a VASCULAR ENDOTHELIAL GROWTH FACTOR A 
690 1 0 |a VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR-1 
651 4 |a HYPERPLASIA 
700 1 |a Perez-Millán, M.I. 
700 1 |a Ornstein, A.M. 
700 1 |a Cristina, C. 
700 1 |a Becu-Villalobos, D. 
773 0 |d 2011  |g v. 337  |h pp. 766-774  |k n. 3  |p J. Pharmacol. Exp. Ther.  |x 00223565  |w (AR-BaUEN)CENRE-825  |t Journal of Pharmacology and Experimental Therapeutics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79956199678&doi=10.1124%2fjpet.110.177790&partnerID=40&md5=e0cc4ab9123c96def73b4d59803fb698  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1124/jpet.110.177790  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00223565_v337_n3_p766_Luque  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223565_v337_n3_p766_Luque  |y Registro en la Biblioteca Digital 
961 |a paper_00223565_v337_n3_p766_Luque  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84627