Control of alternative splicing through siRNA-mediated transcriptional gene silencing

When targeting promoter regions, small interfering RNAs (siRNAs) trigger a previously proposed pathway known as transcriptional gene silencing by promoting heterochromatin formation. Here we show that siRNAs targeting intronic or exonic sequences close to an alternative exon regulate the splicing of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alló, M.
Otros Autores: Buggiano, V., Fededa, J.P, Petrillo, E., Schor, I., De La Mata, M., Agirre, E., Plass, M., Eyras, E., Elela, S.A, Klinck, R., Chabot, B., Kornblihtt, A.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nature Publishing Group 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13549caa a22013817a 4500
001 PAPER-23261
003 AR-BaUEN
005 20230518205455.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-67650299463 
024 7 |2 cas  |a lysine, 56-87-1, 6899-06-5, 70-54-2 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NSMBC 
100 1 |a Alló, M. 
245 1 0 |a Control of alternative splicing through siRNA-mediated transcriptional gene silencing 
260 |b Nature Publishing Group  |c 2009 
270 1 0 |m Kornblihtt, A. R.; Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, Ciudad Universitaria, Buenos Aires, Argentina; email: ark@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Kornblihtt, A.R., Chromatin, transcript elongation and alternative splicing (2006) Nat. Struct. Mol. Biol, 13, pp. 5-7 
504 |a Lorincz, M.C., Dickerson, D.R., Schmitt, M., Groudine, M., Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells (2004) Nat. Struct. Mol. Biol, 11, pp. 1068-1075 
504 |a Batsché, E., Yaniv, M., Muchardt, C., The human SWI/SNF subunit Brm is a regulator of alternative splicing (2006) Nat. Struct. Mol. Biol, 13, pp. 22-29 
504 |a Schor, I.E., Rascovan, N., Pelisch, F., Allo, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 4325-4330 
504 |a Kim, D.H., Villeneuve, L.M., Morris, K.V., Rossi, J.J., Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells (2006) Nat. Struct. Mol. Biol, 13, pp. 793-797 
504 |a Morris, K.V., Chan, S.W., Jacobsen, S.E., Looney, D.J., Small interfering RNA-induced transcriptional gene silencing in human cells (2004) Science, 305, pp. 1289-1292 
504 |a Suzuki, K., Closed chromatin architecture is induced by an RNA duplex targeting the HIV-1 promoter region (2008) J. Biol. Chem, 283, pp. 23353-23363 
504 |a Kuramochi-Miyagawa, S., DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes (2008) Genes Dev, 22, pp. 908-917 
504 |a González, S., Pisano, D.G., Serrano, M., Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs (2008) Cell Cycle, 7, pp. 2601-2608 
504 |a Zhang, M.X., Effect of 27nt small RNA on endothelial nitric-oxide synthase expression (2008) Mol. Biol. Cell, 19, pp. 3997-4005 
504 |a Zhang, M.X., Biogenesis of short intronic repeat 27-nucleotide small RNA from endothelial nitric-oxide synthase gene (2008) J. Biol. Chem, 283, pp. 14685-14693 
504 |a Tay, Y., Zhang, J., Thomson, A.M., Lim, B., Rigoutsos, I., MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation (2008) Nature 
504 |a Kim, D.H., Saetrom, P., Snove Jr., O., Rossi, J.J., MicroRNA-directed transcriptional gene silencing in mammalian cells (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 16230-16235 
504 |a de la Mata, M., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol. Cell, 12, pp. 525-532 
504 |a Schwarz, D.S., Asymmetry in the assembly of the RNAi enzyme complex (2003) Cell, 115, pp. 199-208 
504 |a Kim, D.H., Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy (2005) Nat. Biotechnol, 23, pp. 222-226 
504 |a Persengiev, S.P., Zhu, X., Green, M.R., Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs) (2004) RNA, 10, pp. 12-18 
504 |a Weinberg, M.S., The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells (2006) RNA, 12, pp. 256-262 
504 |a Han, J., Kim, D., Morris, K.V., Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 12422-12427 
504 |a Meister, G., Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs (2004) Mol. Cell, 15, pp. 185-197 
504 |a Janowski, B.A., Involvement of AGO1 and AGO2 in mammalian transcriptional silencing (2006) Nat. Struct. Mol. Biol, 13, pp. 787-792 
504 |a de la Mata, M., Kornblihtt, A.R., RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20 (2006) Nat. Struct. Mol. Biol, 13, pp. 973-980 
504 |a Tong, W., Kulaeva, O.I., Clark, D.J., Lutter, L.C., Topological analysis of plasmid chromatin from yeast and mammalian cells (2006) J. Mol. Biol, 361, pp. 813-822 
504 |a Wang, G., Liu, T., Wei, L.N., Law, P.Y., Loh, H.H., DNA methylation-related chromatin modification in the regulation of mouse delta-opioid receptor gene (2005) Mol. Pharmacol, 67, pp. 2032-2039 
504 |a Yokoyama, R., Pannuti, A., Ling, H., Smith, E.R., Lucchesi, J.C., A plasmid model system shows that Drosophila dosage compensation depends on the global acetylation of histone H4 at lysine 16 and is not affected by depletion of common transcription elongation chromatin marks (2007) Mol. Cell. Biol, 27, pp. 7865-7870 
504 |a Blau, J., Three functional classes of transcriptional activation domain (1996) Mol. Cell. Biol, 16, pp. 2044-2055 
504 |a Kubicek, S., Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase (2007) Mol. Cell, 25, pp. 473-481 
504 |a Cam, H.P., Chen, E.S., Grewal, S.I., Transcriptional scaffolds for heterochromatin assembly (2009) Cell, 136, pp. 610-614 
504 |a Moazed, D., Small RNAs in transcriptional gene silencing and genome defence (2009) Nature, 457, pp. 413-420 
504 |a Umlauf, D., Goto, Y., Feil, R., Site-specific analysis of histone methylation and acetylation (2004) Methods Mol. Biol, 287, pp. 99-120 
504 |a Kapranov, P., RNA maps reveal new RNA classes and a possible function for pervasive transcription (2007) Science, 316, pp. 1484-1488 
504 |a Klinck, R., Multiple alternative splicing markers for ovarian cancer (2008) Cancer Res, 68, pp. 657-663 
504 |a Kim, V.N., Han, J., Siomi, M.C., Biogenesis of small RNAs in animals (2009) Nat. Rev. Mol. Cell Biol, 10, pp. 126-139 
504 |a Okamura, K., Lai, E.C., Endogenous small interfering RNAs in animals (2008) Nat. Rev. Mol. Cell Biol, 9, pp. 673-678 
504 |a Tam, O.H., Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes (2008) Nature, 453, pp. 534-538 
504 |a Watanabe, T., Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes (2008) Nature, 453, pp. 539-543 
504 |a Yang, N., Kazazian Jr., H.H., L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells (2006) Nat. Struct. Mol. Biol, 13, pp. 763-771 
504 |a Schwartz, J.C., Antisense transcripts are targets for activating small RNAs (2008) Nat. Struct. Mol. Biol, 15, pp. 842-848 
504 |a Morris, K.V., Santoso, S., Turner, A.M., Pastori, C. & Hawkins, P.G. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 4, e1000258 (2008); Haussecker, D., Proudfoot, N.J., Dicer-dependent turnover of intergenic transcripts from the human beta-globin gene cluster (2005) Mol. Cell. Biol, 25, pp. 9724-9733 
504 |a Tufarelli, C., Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease (2003) Nat. Genet, 34, pp. 157-165 
504 |a Yu, W., Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA (2008) Nature, 451, pp. 202-206 
504 |a Rinn, J.L., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs (2007) Cell, 129, pp. 1311-1323 
504 |a Kadener, S., Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing (2001) EMBO J, 20, pp. 5759-5768 
504 |a Nogués, G., Kadener, S., Cramer, P., Bentley, D., Kornblihtt, A.R., Transcriptional activators differ in their abilities to control alternative splicing (2002) J. Biol. Chem, 277, pp. 43110-43114 
504 |a Cramer, P., Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer (1999) Mol. Cell, 4, pp. 251-258 
520 3 |a When targeting promoter regions, small interfering RNAs (siRNAs) trigger a previously proposed pathway known as transcriptional gene silencing by promoting heterochromatin formation. Here we show that siRNAs targeting intronic or exonic sequences close to an alternative exon regulate the splicing of that exon. The effect occurred in hepatoma and HeLa cells with siRNA antisense strands designed to enter the silencing pathway, suggesting hybridization with nascent pre-mRNA. Unexpectedly, in HeLa cells the sense strands were also effective, suggesting that an endogenous antisense transcript, detectable in HeLa but not in hepatoma cells, acts as a target. The effect depends on Argonaute-1 and is counterbalanced by factors favoring chromatin opening or transcriptional elongation. The increase in heterochromatin marks (dimethylation at Lys9 and trimethylation at Lys27 of histone H3) at the target site, the need for the heterochromatin-associated protein HP1α and the reduction in RNA polymerase II processivity suggest a mechanism involving the kinetic coupling of transcription and alternative splicing. © 2009 Nature America, Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Fundación Antorchas 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank P. Bertucci, M. Blaustein, F. Pelisch, M. Muñoz, A. Srebrow, G. Risso, L.G. Acuña, M.G. Herz, N. Tilgner, I. Listerman, M. Bühler, J. Martínez, K. Neugebauer and K. Morris for their support and useful discussions; and Boehringer Ingelheim Pharmaceuticals (Biomolecular Screening, Department of Medicinal Chemistry) for the gift of BIX-01294. This work was supported by grants to A.R.K. from the Fundación Antorchas, the Agencia Nacional de Promoción de Ciencia y Tecnología of Argentina, the University of Buenos Aires and the European Alternative Splicing Network. S.A.E., R.K. and B.C. acknowledge support from Genome Canada and Genome Quebec. M.A. is the recipient of a fellowship and A.R.K. is a career investigator from the Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina. B.C. holds a Canada Research Chair in functional genomics. A.R.K. is an international research scholar of the Howard Hughes Medical Institute. 
593 |a Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, Ciudad Universitaria, Buenos Aires, Argentina 
593 |a ICREA, Universitat Pompeu Fabra, Barcelona, Spain 
593 |a Laboratoire de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, QC, Canada 
690 1 0 |a ARGONAUTE 1 PROTEIN 
690 1 0 |a HETEROCHROMATIN PROTEIN 1 
690 1 0 |a HETEROCHROMATIN PROTEIN 1ALPHA 
690 1 0 |a HISTONE H3 
690 1 0 |a LYSINE 
690 1 0 |a RNA POLYMERASE II 
690 1 0 |a SMALL INTERFERING RNA 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ALTERNATIVE RNA SPLICING 
690 1 0 |a ARTICLE 
690 1 0 |a CELL SPECIFICITY 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a EXON 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a GENE SILENCING 
690 1 0 |a HELA CELL 
690 1 0 |a HETEROCHROMATIN 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a INTRON 
690 1 0 |a LIVER CELL CARCINOMA 
690 1 0 |a METHYLATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROMOTER REGION 
690 1 0 |a REGULATORY MECHANISM 
690 1 0 |a TRANSCRIPTION REGULATION 
700 1 |a Buggiano, V. 
700 1 |a Fededa, J.P. 
700 1 |a Petrillo, E. 
700 1 |a Schor, I. 
700 1 |a De La Mata, M. 
700 1 |a Agirre, E. 
700 1 |a Plass, M. 
700 1 |a Eyras, E. 
700 1 |a Elela, S.A. 
700 1 |a Klinck, R. 
700 1 |a Chabot, B. 
700 1 |a Kornblihtt, A.R. 
773 0 |d Nature Publishing Group, 2009  |g v. 16  |h pp. 717-724  |k n. 7  |p Nat. Struct. Mol. Biol.  |x 15459993  |w (AR-BaUEN)CENRE-6227  |t Nature Structural and Molecular Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-67650299463&doi=10.1038%2fnsmb.1620&partnerID=40&md5=dc68941e5f67d02cfd5fd29f37bc80dd  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1038/nsmb.1620  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15459993_v16_n7_p717_Allo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15459993_v16_n7_p717_Allo  |y Registro en la Biblioteca Digital 
961 |a paper_15459993_v16_n7_p717_Allo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84214