Size-dependent mortality in a Neotropical savanna tree: The role of height-related adjustments in hydraulic architecture and carbon allocation

Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zhang, Y.-J
Otros Autores: Meinzer, F.C, Hao, G.-Y, Scholz, F.G, Bucci, S.J, Takahashi, F.S.C, Villalobos-Vega, R., Giraldo, J.P, Cao, K.-F, Hoffmann, W.A, Goldstein, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19069caa a22018137a 4500
001 PAPER-23081
003 AR-BaUEN
005 20230518205443.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-69949159224 
024 7 |2 cas  |a carbon, 7440-44-0; carbon dioxide, 124-38-9, 58561-67-4; water, 7732-18-5; Carbon, 7440-44-0; Carbon Dioxide, 124-38-9; Water, 7732-18-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLCED 
100 1 |a Zhang, Y.-J. 
245 1 0 |a Size-dependent mortality in a Neotropical savanna tree: The role of height-related adjustments in hydraulic architecture and carbon allocation 
260 |c 2009 
270 1 0 |m Meinzer, F. C.; USDA Forest Service, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331, United States; email: rick.meinzer@oregonstate.edu 
506 |2 openaire  |e Política editorial 
504 |a Abramoff, M.D., Magelhaes, P.J., Ram, S.J., Image processing with Imagej (2004) Biophotonics International, 11, pp. 36-42 
504 |a Brodribb, T.J., Holbrook, N.M., Stomatal closure during leaf dehydration, correlation with other leaf physiological traits (2003) Plant Physiology, 132, pp. 2166-2173 
504 |a Brodribb, T.J., Holbrook, N.M., Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms (2004) New Phytologist, 162, pp. 663-670 
504 |a Bucci, S.J., Scholz, F.G., Goldstein, G., Meinzer, F.C., Sternberg, L., Da, S.L., Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: Factors and mechanisms contributing to the refilling of embolized vessels (2003) Plant, Cell & Environment, 26, pp. 1633-1645 
504 |a Bucci, S.J., Scholz, F.G., Goldstein, G., Meinzer, F.C., Hinojosa, J.A., Hoffmann, W.A., Franco, A.C., Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species (2004) Tree Physiology, 24, pp. 1119-1127 
504 |a Bucci, S.J., Goldstein, G.H., Meinzer, F.C., Scholz, F.G., Franco, A.C., Bustamante, M., Functional convergence in hydraulic architecture and water relations of tropical savanna trees: From leaf to whole plant (2004) Tree Physiology, 24, pp. 891-899 
504 |a Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Campanello, P., Scholz, F.G., Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plants in Neotropical savanna trees (2005) Trees, 19, pp. 296-304 
504 |a Bucci, S.J., Scholz, F.G., Goldstein, G., Hoffmann, W.A., Meinzer, F.C., Franco, A.C., Giambelluca, T., Miralles-Wilhelm, F., Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna (2008) Agricultural and Forest Meteorology, 148, pp. 839-849 
504 |a Canny, M., Embolism and refilling in the maize leaf lamina and the role of the protoxylem lacuna (2001) American Journal of Botany, 88, pp. 47-51 
504 |a Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P., Osorio, M.L., Carvalho, I., Pinheiro, C., How plants cope with water stress in the field? Photosynthesis and growth (2002) Annals of Botany, 89, pp. 907-916 
504 |a Cochard, H., Froux, F., Mayr, S., Coutard, C., Xylem wall collapse in water-stressed pine needles (2004) Plant Physiology, 134, pp. 401-408 
504 |a Crombie, D.S., Tippett, J.T., A comparison of water relations, visual symptoms, and changes in stem girth for evaluating impact of Phytophthora cinnamomi on Eucalyptus marginata (1990) Canadian Journal of Forest Resources, 20, pp. 233-240 
504 |a Domec, J.-C., Lachenbruch, B., Meinzer, F.C., Woodruff, D.R., Warren, J.M., McCulloh, K.A., Maximum height in a conifer is associated with conflicting requirements for xylem design (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 12069-12074 
504 |a Foster, R.B., Tachigalia versicolor is a suicidal Neotropical tree (1977) Nature, 268, pp. 624-626 
504 |a Franklin, J.F., Shugart, H.H., Harmon, M.E., Tree death as an ecological process (1987) Bioscience, 37, pp. 550-556 
504 |a Gerrish, G., Mueller-Dombois, D., Bridges, K.W., Nutrient limitation and Metrosideros forest dieback in Hawaii (1988) Ecology, 69, pp. 723-727 
504 |a Gibbs, R., Craig, I., Myers, B.J., Yuan, Z.Q., Effect of drought and defoliation on the susceptibility of eucalypts to cankers caused by Endothia gyrosa and Botryoshaeria ribis (1990) Australian Journal of Botany, 38, pp. 571-581 
504 |a Goldstein, G., Meinzer, F.C., Bucci, S.J., Scholz, F.G., Franco, A.C., Hoffmann, W.A., Water economy of Neotropical savanna: Six paradigms revisited (2008) Tree Physiology, 28, pp. 395-404 
504 |a Haugen, D.A., Underdown, M.G., Sirex noctilio control program in response to the 1987 Green Triangle outbreak (1990) Australian Forestry, 53, pp. 33-40 
504 |a Huntley, B.J., Walker, B.H., (1982) Ecology of Tropical Savanna., , Springer. Heidelburg, Germany 
504 |a Jackson, P.C., Meinzer, F.C., Bustamante, M., Goldstein, G., Franco, A., Rundel, P.W., Caldas, L.S., Causin, F., Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem (1999) Tree Physiology, 36, pp. 237-268 
504 |a James, S.A., Clearwater, M.J., Meinzer, F.C., Goldstein, G., Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood (2002) Tree Physiology, 22, pp. 277-283 
504 |a Johnson, D.M., Meinzer, F.C., Woodruff, D.R., McCulloh, K.A., Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species (2009) Plant, Cell & Environment, 32, pp. 828-836 
504 |a Koch, G.W., Sillett, S.C., Jennings, G.M., Davis, S.D., The limits to tree height (2004) Nature, 428, pp. 851-854 
504 |a Lewis, G.P., (2005) Legumes of the World., , Royal Botanic Gardens. Kew, Richmond, UK 
504 |a Lo Gullo, M.A., Nardini, A., Triflio, P., Salleo, S., Changes in leaf hydraulic and stomatal conductance following drought stress and irrigation in Ceratonia siliqua (Carob tree) (2003) Physiologia Plantarum, 117, pp. 186-194 
504 |a Lowman, M.D., Heatwole, H., Spatial and temporal variability in defoliation of Australian eucalypts (1992) Ecology, 73, pp. 129-142 
504 |a McDowell, N., Barnard, H., Bond, B.J., The relationship between tree height and leaf area: Sapwood area ratio (2002) Oecologia, 132, pp. 12-20 
504 |a McDowell, N.G., Licata, J., Bond, B.J., Environmental sensitivity of gas exchange in different-sized trees (2005) Oecologia, 145, pp. 9-20 
504 |a MacGregor, S.D., O'Connor, T.G., Patch dieback of Colophospermum mopane in a dysfunctional semi-arid African savanna (2002) Austral Ecology, 27, pp. 385-395 
504 |a Manion, P.D., Lachance, D., (1992) Forest Decline Concepts., , APS Press. St. Paul, MN, USA 
504 |a Meinzer, F.C., Rundel, P.W., Sharifi, M.R., Nilsen, E.T., Turgor and osmotic relations of the desert shrub Larrea tridentata (1986) Plant, Cell & Environment, 9, pp. 467-475 
504 |a Meinzer, F.C., Goldstein, G., Franco, A.C., Bustamante, M., Igler, E., Jackson, P., Caldas, L., Rundel, P.W., Atmospheric and hydraulic limitations on transpiration in Brazilian Cerrado woody species (1999) Functional Ecology, 13, pp. 273-282 
504 |a Meinzer, F.C., Campanello, P.I., Domec, J.C., Gatti, M.G., Goldstein, G., Villalobos-Vega, R., Woodruff, D.R., Constraints on physiological function associated with branch architecture and wood density in tropical forest trees (2008) Tree Physiology, 28, pp. 1609-1617 
504 |a Melcher, P.J., Goldstein, G., Meinzer, F.C., Yount, D., Jones, T., Holbrook, N.M., Huang, C.X., Water relations of coastal and estuarine Rhizophora mangle: Xylem tension and dynamics of embolism formation and repair (2001) Oecologia, 126, pp. 182-192 
504 |a Mueller-Dombois, D., Ohi'a dieback and protection management of the Hawaiian rain forest (1985) Hawaii's Terrestrial Ecosystems Preservation and Management, pp. 403-421. , In. eds. C.P. Stone. J.M. Scott). pp. Cooperative National Park Resources Studies Unit, University of Hawaii. Honolulu, HI, USA 
504 |a Niinemets, Ü., Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris (2002) Tree Physiology, 22, pp. 515-535 
504 |a Oliveira, R.S., Bezerra, L., Davidson, E.A., Pinto, F., Klink, C.A., Nepstad, D.C., Moreira, A., Deep root function in soil water dynamics in cerrado savannas of central Brazil (2005) Functional Ecology, 19, pp. 574-581 
504 |a Pires, I.P., Marcati, C.R., Anatomia e uso da madeira de duas variedades de Sclerolobium paniculatum Vog. do sul do Maranhao, Brazil (2005) Acta Botanica Brasilica, 19, pp. 669-678 
504 |a Poorter, L., Zuidema, P.A., Pena-Claros, M., Boot, R.G.A., A monocarpic tree species in a polycarpic world: How can Tachigali vasquezii maintain itself so successfully in a tropical rain forest community? (2005) Journal of Ecology, 93, pp. 268-278 
504 |a Rawitscher, F., The water economy of the vegetation of the campos cerrados in southern Brazil (1948) Journal of Ecology, 36, pp. 237-267 
504 |a Rice, K.J., Matzner, S.L., Byer, W., Brown, J.R., Patterns of tree dieback in Queensland, Australia: The importance of drought stress and the role of resistance to cavitaion (2004) Oecologia, 139, pp. 190-198 
504 |a Ryan, M.J., Yoder, B.J., Hydraulic limits to tree height and tree growth (1997) Bioscience, 47, pp. 235-242 
504 |a Ryan, M.J., Phillips, N., Bond, B.J., The hydraulic limitation hypothesis revisited (2006) Plant, Cell & Environment, 29, pp. 367-381 
504 |a Sack, L., Cowan, P.D., Jaikumar, N., Holbrook, N.M., The 'hydrology' of leaves: Coordination of structure and function in temperate woody species (2003) Plant, Cell & Environment, 26, pp. 1343-1356 
504 |a Sala, A., Hoch, G., Height-related growth declines in ponderosa pine are not due to carbon limitation (2009) Plant, Cell & Environment, 32, pp. 22-30 
504 |a Schäfer, K.V.R., Oren, R., Tenhunen, J.D., The effect of tree height on crown level stomatal conductance (2000) Plant, Cell & Environment, 23, pp. 365-375 
504 |a Scholz, F.G., (2006), PhD thesis, University of Buenos Aires, Argentina; Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees (2007) Plant, Cell & Environment, 30, pp. 236-248 
504 |a Scholz, F.G., Bucci, S.J., Goldstein, G., Moreira, M.Z., Meinzer, F.C., Domec, J.-C., Villalobos Vega, R., Miralles-Wilhelm, F., Biophysical and life history determinants of hydraulic lift in Neotropical savanna trees (2008) Functional Ecology, 22, pp. 773-786. , doi: 10.1111/j.1365-2435.2008.01452.x 
504 |a Schulte, P.J., Hinckley, T.M., A comparison of pressure-volume curve data analysis techniques (1985) Journal of Experimental Botany, 36, pp. 590-602 
504 |a Stearns, S.C., (1992) The Evolution of Life History Strategies., , Oxford University Press. Oxford, UK 
504 |a Tyree, M.T., Hammel, H.T., The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique (1972) Journal of Experimental Botany, 23, pp. 267-282 
504 |a Tyree, M.T., Sperry, J.S., Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? (1988) Plant Physiology, 88, pp. 574-580 
504 |a Tyree, M.T., Sperry, J.S., Vulnerability of xylem to cavitation and embolism (1989) Annual Review of Plant Physiology and Plant Molecular Biology, 40, pp. 19-48 
504 |a Watt, K.E.F., An alternative explanation for the increased forest mortality in Europe and North America (1987) Dansk Skovforenings Tidsskrift, 72, pp. 210-224 
504 |a Whitehead, D., Jarvis, P.G., Waring, R.H., Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment (1984) Canadian Journal of Forest Research, 14, pp. 692-700 
504 |a Williams, C.A., Cooper, D.J., Mechanisms of riparian cottonwood decline along regulated rivers (2005) Ecosystems, 8, pp. 382-395 
504 |a Williams, G.C., Pleiotropy, natural selection and the evolution of senescence (1957) Evolution, 11, pp. 398-411 
504 |a Woodman, J.N., Pollution-induced injury in North American forests: Facts and suspicions (1987) Tree Physiology, 3, pp. 1-15 
504 |a Woodruff, D.R., Bond, B.J., Meinzer, F.C., Does turgor limit growth in tall trees? (2004) Plant, Cell & Environment, 27, pp. 229-236 
504 |a Woodruff, D.R., McCulloh, K.A., Warren, J.M., Meinzer, F.C., Lachenbruch, B., Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir (2007) Plant, Cell & Environment, 30, pp. 559-569 
504 |a Woodruff, D.R., Meinzer, F.C., Lachenbruch, B., Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: Safety versus efficiency in water transport (2008) New Phytologist, 180, pp. 90-99 
504 |a Woodruff, D.R., Meinzer, F.C., Lachenbruch, B., Johnson, D.M., Coordination of leaf structure and gas exchange along a height gradient in a tall conifer (2009) Tree Physiology, 29, pp. 261-272 
504 |a Zimmermann, M.H., Jeje, A.A., Vessel-length distribution of some American woody plants (1981) Canadian Journal of Botany, 59, pp. 1882-1892 
504 |a Zwieniecki, M.A., Holbrook, N.M., Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.), red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.) (1998) Plant, Cell & Environment, 21, pp. 1173-1180 
520 3 |a Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance (Kleaf) than small trees and all tree sizes exhibited lower Kleaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits. © 2009 Blackwell Publishing Ltd.  |l eng 
593 |a Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China 
593 |a Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, United States 
593 |a Graduate School, Chinese Academy of Sciences, Beijing 100039, China 
593 |a USDA Forest Service, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331, United States 
593 |a Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Laboratorio de Ecologia Funcional, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina 
593 |a Departamento de Ecologia, Universidade de Brasilia, Caixa Postal 04457, Brasilia DF 70904970, Brazil 
593 |a Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States 
593 |a Department of Plant Biology, North Carolina State University, Raleigh, NC 27695-7612, United States 
593 |a Consejo Nac. de Investigaciones Cientificas y Tecnicas, Laboratorio de Ecologia Funcional, Ciudad Universitaria, Nuñez, Buenos Aires, Argentina 
690 1 0 |a CARBON BALANCE 
690 1 0 |a HYDRAULIC CONDUCTIVITY 
690 1 0 |a POPULATION DYNAMICS 
690 1 0 |a TREE DIEBACK 
690 1 0 |a XYLEM CAVITATION 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a WATER 
690 1 0 |a BIOMASS ALLOCATION 
690 1 0 |a CARBON BALANCE 
690 1 0 |a CAVITATION 
690 1 0 |a DIEBACK 
690 1 0 |a HYDRAULIC CONDUCTIVITY 
690 1 0 |a MORTALITY 
690 1 0 |a NEOTROPICAL REGION 
690 1 0 |a SAVANNA 
690 1 0 |a SOIL WATER 
690 1 0 |a XYLEM 
690 1 0 |a ARTICLE 
690 1 0 |a BRAZIL 
690 1 0 |a EVAPOTRANSPIRATION 
690 1 0 |a LEGUME 
690 1 0 |a METABOLISM 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a PLANT LEAF 
690 1 0 |a PLANT STEM 
690 1 0 |a PLANT STOMA 
690 1 0 |a TREE 
690 1 0 |a WOOD 
690 1 0 |a BRAZIL 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a FABACEAE 
690 1 0 |a PLANT LEAVES 
690 1 0 |a PLANT STEMS 
690 1 0 |a PLANT STOMATA 
690 1 0 |a PLANT TRANSPIRATION 
690 1 0 |a TREES 
690 1 0 |a WATER 
690 1 0 |a WOOD 
690 1 0 |a BRAZIL 
690 1 0 |a FABACEAE 
690 1 0 |a SCLEROLOBIUM PANICULATUM 
650 1 7 |2 spines  |a CARBON 
650 1 7 |2 spines  |a CARBON 
651 4 |a SOUTH AMERICA 
700 1 |a Meinzer, F.C. 
700 1 |a Hao, G.-Y. 
700 1 |a Scholz, F.G. 
700 1 |a Bucci, S.J. 
700 1 |a Takahashi, F.S.C. 
700 1 |a Villalobos-Vega, R. 
700 1 |a Giraldo, J.P. 
700 1 |a Cao, K.-F. 
700 1 |a Hoffmann, W.A. 
700 1 |a Goldstein, G. 
773 0 |d 2009  |g v. 32  |h pp. 1456-1466  |k n. 10  |p Plant Cell Environ.  |x 01407791  |w (AR-BaUEN)CENRE-6496  |t Plant, Cell and Environment 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-69949159224&doi=10.1111%2fj.1365-3040.2009.02012.x&partnerID=40&md5=822c4a01d930954633b7f40a5f26087e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1365-3040.2009.02012.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01407791_v32_n10_p1456_Zhang  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01407791_v32_n10_p1456_Zhang  |y Registro en la Biblioteca Digital 
961 |a paper_01407791_v32_n10_p1456_Zhang  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion