The photorelease of nitrogen monoxide (NO) from pentacyanonitrosyl coordination compounds of group 8 metals

The photodetachment of NO from [MII(CN5NO]2- with M = Fe, Ru, and Os, upon laser excitation at various wavelengths (355, 420, and 480 nm) was followed by various techniques. The three complexes showed a wavelength-dependent quantum yield of NO production Φ (NO), as measured with an NO-sensitive elec...

Descripción completa

Detalles Bibliográficos
Autor principal: Videla, M.
Otros Autores: Braslavsky, Silvia Elsa, Olabe, J.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2005
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15004caa a22013817a 4500
001 PAPER-22196
003 AR-BaUEN
005 20241101092352.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-13444261207 
024 7 |2 cas  |a nitric oxide, 10102-43-9; water, 7732-18-5; Cyanides; Metals, Heavy; Nitric Oxide, 10102-43-9; Nitroso Compounds; Organometallic Compounds 
030 |a PPSHC 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Videla, M. 
245 1 4 |a The photorelease of nitrogen monoxide (NO) from pentacyanonitrosyl coordination compounds of group 8 metals 
260 |c 2005 
270 1 0 |m Braslavsky, S.E.; Max-Planck-Inst. Bioanorgan. Chem., Postfach 101365, D-45413 Mülheim an der Ruhr, Germany; email: braslavskys@mpi-muelheim.mpg.de 
504 |a (2000) Nitric Oxide, Biology and Pathobiology, , ed. J. L. Ignarro, Academic Press, San Diego, CA 
504 |a Stamler, J.S., Feelisch, M., Biochemistry of nitric oxide and redox-related species (1996) Methods in Nitric Oxide Research, pp. 19-27. , ed. M. Feelisch and J. S. Stamler, Wiley, Chichester 
504 |a Richter-Addo, G.B., Legzdins, P., (1992) Metal Nitrosyls, , Oxford University Press, New York 
504 |a Olabe, J.A., Slep, L.D., Reactivity and structure of complexes of small molecules: Nitric and nitrous oxide (2004) Comprehensive Coordination Chemistry II, from Biology to Nanotechnology, 1, pp. 603-623. , ed. J. A. Mc Cleverty and T. J. Meyer, Elsevier, Oxford section III, ch. 1.31 
504 |a Clarke, M.J., Gaul, J.B., Chemistry relevant to the biological effects of nitric oxide and metallonitrosyls (1993) Struct. Bond., 81, pp. 147-181 
504 |a Fricker, S.P., Slade, E., Powell, N.A., Vaughan, O.J., Henderson, G.R., Murrer, B.A., Megson, I.L., Flitney, F.W., Ruthenium complexes as nitric oxide scavengers: A potential therapeutic approach to nitric oxide-mediated diseases (1997) Br. J. Pharmacol., 122, pp. 1441-1449 
504 |a Ford, P.C., Lorkovic, I.M., Mechanistic aspects of the reactions of nitric oxide with transition-metal complexes (2002) Chem. Rev., 102, pp. 993-1017 
504 |a Ford, P.C., Laverman, L.E., Lorkovic, I.M., (2003) Adv. Inorg. Chem., 54, pp. 203-257 
504 |a Hayton, T.W., Legzdins, P., Sharp, W.B., Coordination and organometallic chemistry of metal-NO complexes (2002) Chem. Rev., 102, pp. 935-991 
504 |a Ford, P.C., Bourassa, J., Miranda, K., Lee, B., Lorkovic, I., Boggs, S., Kudo, S., Laverman, L., Photochemistry of metal nitrosyl complexes. Delivery of nitric oxide to biological targets (1998) Coord. Chem. Rev., 171, pp. 185-202 
504 |a Tfouni, E., Krieger, M., McGarvey, B., Franco, D.W., Structure, chemical and photochemical reactivity and biological activity of some ruthenium amine nitrosyl complexes (2003) Coord. Chem. Rev., 236, pp. 57-69 
504 |a Baraldo, L.M., Forlano, P., Parise, A.R., Slep, L.D., Olabe, J.A., Advances in the coordination chemistry of [M(CN 5L]n - Ions (M= Fe, Ru, Os) (2001) Coord. Chem. Rev., 219, pp. 881-921 
504 |a Callahan, R.W., Meyer, T.J., Reversible electron transfer in ruthenium nitrosyl complexes (1977) Inorg. Chem., 16, pp. 574-581 
504 |a Enemark, J.H., Feltham, R.D., Principles of structure, bonding, and reactivity for metal nitrosyl complexes (1974) Coord. Chem. Rev., 13, pp. 339-406 
504 |a Cameron, B.R., Darkes, M.C., Yee, H., Olsen, M., Fricker, S.P., Skerlj, R.T., Bridget, G.J., Zubieta, J., J. Ruthenium(III) polyaminocarboxylate complexes: Efficient and effective nitric oxide scavengers (2003) Inorg. Chem., 42, pp. 1868-1876 
504 |a Sauaia, M., de Lima, R.G., Tedesco, A.C., da Silva, R.S., Photoinduced NO release by visible light irradiation from pyrazine-bridged nitrosyl ruthenium complexes (2003) J. Am. Chem. Soc., 125, pp. 14718-14719 
504 |a Sauaia, M., de Souza Oliveira, F., Tedesco, A.C., da Silva, R.S., Control of NO release by light irradiation from nitrosyl-ruthenium complexes containing polypyridyl ligands (2003) Inorg. Chim. Acta, 355, pp. 191-196 
504 |a Togniolo, V., da Silva, R.S., Tedesco, A.C., Photo-induced nitric oxide release from chlorobis(2,2′-bipyridine)nitrosylruthenium(II) in aqueous solution (2001) Inorg. Chim. Acta, 316, pp. 7-12 
504 |a Szacilowski, K., Wojciech, M., Stochel, G., Stasicka, Z., Sostero, S., Traverso, O., Ligand and medium controlled photochemistry of iron and ruthenium mixed-ligand complexes: Prospecting for versatile systems (2000) Coord. Chem. Rev., 208, pp. 277-297 
504 |a Balzani, V., Carassiti, V., (1970) Photochemistry of Coordination Compounds, , Academic Press, San Diego, CA 
504 |a Stochel, G., High-pressure mechanistic studies on thermal and photochemical reactions of pentacyanoferrate complexes (1992) Coord. Chem. Rev., 114, pp. 269-295 
504 |a Stochel, G., van Eldik, R., Photochemical behaviour of metal complexes. Pressure effect versus mechanism (1997) Coord. Chem. Rev., 159, pp. 153-170 
504 |a Wolfe, S.K., Swinehart, J.H., Photochemistry of pentacyanonitrosylferrate(2-), nitroprusside (1975) Inorg. Chem., 14, pp. 1049-1053 
504 |a Olabe, J.A., Gentil, L.A., Rigotti, G., Navaza, A., Crystal and molecular structure of sodium pentacyanonitrosylruthenate(II) dihydrate and its spectroscopic properties and reactivity (1984) Inorg. Chem., 23, pp. 4297-4302 
504 |a Baraldo, L.M., Bessega, M.S., Rigotti, G.E., Olabe, J.A., Crystal and molecular structure, spectroscopic properties, and electrophilic reactivity of sodium pentacyanonitrosylosmate(II) dihydrate (1994) Inorg. Chem., 33, pp. 5890-5896 
504 |a Dietrich, B., Hosseini, M.W., Lehn, J.-M., Sessions, R.B., Synthesis and protonation features of 24-, 27-, and 32-membered macrocyclic polyamines (1983) Helv. Chim. Acta, 66, pp. 1262-1278 
504 |a Eaton, D.F., Reference Materials for Fluorescence Measurements (1988) Pure Appl. Chem., 60, pp. 1107-1114 
504 |a Schmidt, P., Gensch, T., Remberg, A., Gärtner, W., Braslavsky, S.E., Schaffner, K., The complexity of the Pr to Pfr phototransformation kinetics is an intrinsic property of native phytochrome (1998) Photochem. Photobiol., 68, pp. 754-761 
504 |a Borsarelli, C.D., Braslavsky, S.E., Volume changes correlate with enthalpy changes during the photoinduced formation of the 3MLCT state of ruthenium(II) bipyridine cyanocomplexes in the presence of salts. A case of the entropy-enthalpy compensation effect (1998) J. Phys. Chem. B, 102, pp. 6231-6238 
504 |a Borsarelli, C.D., Braslavsky, S.E., Enthalpy, volume and entropy changes associated with the electron transfer reaction between the 3MLCT state of Ru(bpy 3 2+ and methyl viologen cation in aqueous solutions (1999) J. Phys. Chem. A, 103, pp. 1719-1727 
504 |a Yruela, I., Churio, M.S., Gensch, T., Braslavsky, S.E., Holzwarth, A.R., Optoacoustic and singlet oxygen near-IR-emission study of the isolated D1-D2-Cyt b559 reaction center complex of photosystem II. Protein movement associated with charge separation (1994) J. Phys. Chem., 98, pp. 12789-12795 
504 |a Borsarelli, C.D., Braslavsky, S.E., Nature of the water structure inside the pools of reverse micelles sensed by laser-induced optoacoustic spectroscopy (1997) J. Phys. Chem. B, 101, pp. 6036-6042 
504 |a Crippa, P.R., Vecli, A., Viappiani, C., Time-resolved photoacoustic spectroscopy: New developments of an old idea (1994) J. Photochem. Photobiol., B: Biol., 24, pp. 3-15 
504 |a Churio, M.S., Angermund, K.P., Braslavsky, S.E., Combination of laser-induced optoacoustic spectroscopy (LIOAS) and semiempirical calculations for the determination of molecular volume changes: The photoisomerization of carbocyanines (1994) J. Phys. Chem., 98, pp. 1776-1782 
504 |a Gensch, T., Viappiani, C., Braslavsky, S.E., Structural volume changes upon photoexcitation of porphyrins: Role of the nitrogen-water interactions (1999) J. Am. Chem. Soc., 121, pp. 10573-10582 
504 |a Stochel, G., van Eldik, R., Stasicka, Z., Mechanistic information from medium and high-pressure effects on the photooxidation of nitrosylpentacyanoferrate(II) (1986) Inorg. Chem., 25, pp. 3663-3666 
504 |a Singh, R.J., Hogg, N., Neese, F., Joseph, J., Kalyanaraman, B., Trapping of nitric oxide formed during photolysis of sodium nitroprusside in aqueous and lipid phases: An electron spin resonance study (1995) Photochem. Photobiol., 61, pp. 325-330 
504 |a Jarzynowski, T., Senkowski, T., Stasicka, Z., Flash photolysis of nitrosylpentacyanoferrate(II) complex (1981) Pol. J. Chem., 55, pp. 3-10 
504 |a Manoharan, P.T., Gray, H.B., Electronic structure of nitroprusside ion (1965) J. Am. Chem. Soc., 87, pp. 3340-3348 
504 |a Kudo, S., Bourassa, J.L., Boggs, S.E., Sato, Y., Ford, P.C., In situ nitric oxide (NO) measurement by modified electrodes: NO labilized by photolysis of metal nitrosyl complexes (1997) Anal. Biochem., 247, pp. 193-202 
504 |a Slep, L.D., Alborés, P., Baraldo, L.M., Olabe, J.A., Kinetics and mechanism of ligand interchange in pentacyano-L-osmate(II) complexes (L = H2O, NH3, N-heterocyclic ligands) (2002) Inorg. Chem., 41, pp. 114-120 
504 |a Toma, H.E., Creutz, C., Pentacyanoferrate(II) complexes: Evaluaton of their formal potentials and mechanism of their quenching of tris(2,2′-bipyridine)ruthenium(II) luminescence (1977) Inorg. Chem., 16, pp. 545-550 
504 |a Mingardi, M., Porter, G.B., Spectra of K4Ru(CN)6 (1968) Spectrosc. Lett., 1, pp. 293-310 
504 |a Vera, L., Zuloaga, F., Triplet-singlet emission of Fe(CN)5CO3- (1978) Inorg. Chem., 17, pp. 765-766 
504 |a Rampi, M.A., Indelli, M.T., Scandola, F., Pina, F., Parola, A.J., Photophysics of supercomplexes. Adduct between Ru(bpy)(CN)4 2- and the [32]ane-N8H8 8+ polyaza macrocyclic (1996) Inorg. Chem., 35, pp. 3355-3361 
504 |a Espenson, J.H., Woneluk Jr., S.G., Kinetics and mechanisms of some substitution reactions of pentacyanoferrate(III) complexes (1972) Inorg. Chem., 11, pp. 2034-2041 
504 |a Roncaroli, F., Olabe, J.A., van Eldik, R., Kinetics and mechanism of the interaction of nitric oxide with pentacyanoferrate(II). Formation and dissociation of [Fe(CN)5NO]3- (2003) Inorg. Chem., 42, pp. 4179-4189 
504 |a Yang, Y.Y., Zink, J.I., Excited-state nitrosyl bending and metal oxidation in K2[Fe(CN)5NO] determined by excited-state Raman spectroscopy (1985) J. Am. Chem. Soc., 107, pp. 4799-4800 
504 |a Coppens, P., Novozhilova, I., Kovalevsky, A., Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes (2002) Chem. Rev., 102, pp. 861-883 
504 |a ChacónVillalba, M.E., Güida, J.A., Varetti, E.L., Aymonino, P.J., Infrared evidence of NO linkage photoisomerization in Na2[Fe(CN)5NO]·2H2O at low temperature: Experimental and theoretical (DFT) isotopic shifts from 15N(O), 18O and 54Fe species (2001) Spectrochim. Acta, 57 (PART A), pp. 367-373 
506 |2 openaire  |e Política editorial 
520 3 |a The photodetachment of NO from [MII(CN5NO]2- with M = Fe, Ru, and Os, upon laser excitation at various wavelengths (355, 420, and 480 nm) was followed by various techniques. The three complexes showed a wavelength-dependent quantum yield of NO production Φ (NO), as measured with an NO-sensitive electrode, the highest values corresponding to the larger photon energies. For the same excitation wavelength the decrease of Φ (NO) at 20 °C in the order Fe > Ru ≫ Os, is explained by the increasing M-N bond strength and inertness of the heavier metals. Transient absorption data at 420 nm indicate the formation of the [MIII(CN)5H2O]2- species in less than ca. 1 μs for M = Fe and Ru. The enthalpy content of [FeIII(CN)5H2O]2- with respect to the parent [FeII(CN)5NO]2- state is (190 ± 20) kJ mol-1, as measured by laser-induced optoacoustic spectroscopy (LIOAS) upon excitation at 480 nm. The production of [FeIII(CN5H2O]2- is concomitant with an expansion of (8 ± 3) ml mol-1 consistent with an expansion of the water bound through hydrogen bonds to the CN ligands plus the difference between NO release into the bulk and water entrance into the first coordination sphere. The activated process, as indicated by the relatively strong temperature dependence of the Φ (NO) values and by the temperature dependence of the appearance of the [FeIII(CN)5H2O]2- species, as determined by LIOAS, is attributed to NO detachment in less than ca. 100 ns from the isonitrosyl (ON) ligand (MS1 state). © The Royal Society of Chemistry and Owner Societies 2005.  |l eng 
593 |a Max-Planck-Inst. Bioanorgan. Chem., Postfach 101365, D-45413 Mülheim an der Ruhr, Germany 
593 |a INQUIMAE, Departamento de Quimica Inorganica, Universidad de Buenos Aires, Pab. II, Buenos Aires C1428EHA, Argentina 
690 1 0 |a IRON COMPLEX 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a OSMIUM DERIVATIVE 
690 1 0 |a RUTHENIUM COMPLEX 
690 1 0 |a WATER 
690 1 0 |a ABSORPTION 
690 1 0 |a ARTICLE 
690 1 0 |a CHEMICAL BOND 
690 1 0 |a COMPLEX FORMATION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ELECTRODE 
690 1 0 |a ENTHALPY 
690 1 0 |a FLUORESCENCE SPECTROSCOPY 
690 1 0 |a HYDROGEN BOND 
690 1 0 |a INFRARED SPECTROSCOPY 
690 1 0 |a LASER INDUCED OPTOACOUSTIC SPECTROSCOPY 
690 1 0 |a LOW TEMPERATURE PROCEDURES 
690 1 0 |a MATHEMATICAL COMPUTING 
690 1 0 |a MEASUREMENT 
690 1 0 |a PHOTOCHEMISTRY 
690 1 0 |a PHOTON 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a QUANTUM YIELD 
690 1 0 |a SPECTRAL SENSITIVITY 
690 1 0 |a SPECTROSCOPY 
690 1 0 |a TEMPERATURE DEPENDENCE 
690 1 0 |a ULTRAVIOLET SPECTROPHOTOMETRY 
690 1 0 |a CYANIDES 
690 1 0 |a LASERS 
690 1 0 |a METALS, HEAVY 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a NITROSO COMPOUNDS 
690 1 0 |a ORGANOMETALLIC COMPOUNDS 
690 1 0 |a PHOTOCHEMISTRY 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a SPECTRUM ANALYSIS 
690 1 0 |a MUS 
700 1 |a Braslavsky, Silvia Elsa 
700 1 |a Olabe, J.A. 
773 0 |d 2005  |g v. 4  |h pp. 75-82  |k n. 1  |p Photochem. Photobiol. Sci.  |x 1474905X  |t Photochemical and Photobiological Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-13444261207&doi=10.1039%2fb408367a&partnerID=40&md5=2cc0bb676f1376fb91796d4b415ce55a  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/b408367a  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1474905X_v4_n1_p75_Videla  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v4_n1_p75_Videla  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_1474905X_v4_n1_p75_Videla  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI