State-dependent modulation of feeding behavior by proopiomelanocortin-derived β-endorphin

Feeding behavior can be divided into appetitive and consummatory phases, differing in neural substrates and effects of deprivation. Opioids play an important role in the appetitive aspects of feeding, but they also have acute stimulatory effects on food consumption. Because the opioid peptide β-endo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Low, M.J
Otros Autores: Hayward, M.D, Appleyard, S.M, Rubinstein, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: New York Academy of Sciences 2003
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09901caa a22012017a 4500
001 PAPER-21650
003 AR-BaUEN
005 20230518205308.0
008 190411s2003 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0038051127 
024 7 |2 cas  |a beta endorphin, 59887-17-1; naloxone, 357-08-4, 465-65-6; neuropeptide Y, 82785-45-3, 83589-17-7; proopiomelanocortin, 66796-54-1 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ANYAA 
100 1 |a Low, M.J. 
245 1 0 |a State-dependent modulation of feeding behavior by proopiomelanocortin-derived β-endorphin 
260 |b New York Academy of Sciences  |c 2003 
270 1 0 |m Low, M.J.; Vollum Institute, Oregon Health and Science University, Portland, OR 97239-3098, United States; email: low@ohsu.edu 
506 |2 openaire  |e Política editorial 
504 |a Morley, J.E., Neuropeptide regulation of appetite and weight (1987) Endocr. Rev., 8, pp. 256-287 
504 |a Glass, M.J., Billington, C.J., Levine, A.S., Opioids and food intake: Distributed functional neural pathways? (1999) Neuropeptides, 33, pp. 360-368 
504 |a Van Ree, J.M., Gerrits, M.A., Vanderschuren, L.J., Opioids, reward, and addiction: An encounter of biology, psychology, and medicine (1999) Pharmacol. Rev., 51, pp. 341-396 
504 |a Trujillo, K.A., Belluzzi, J.D., Stein, L., Opiate antagonists and self-stimulation: Extinction-like response patterns suggest selective reward deficit (1989) Brain Res., 492, pp. 15-28 
504 |a Belluzzi, J.D., Stein, L., Enkephaline may mediate euphoria and drive-reduction reward (1977) Nature, 266, pp. 556-558 
504 |a Reisine, T., Pasternak, G.W., Opioid analgesics and antagonists (1996) Goodman and Gilman's Pharmacologic Basis of Therapeutics, pp. 521-555. , J.G. Hardman, A.G. Gilman & L.E. Limbird, Eds. McGraw-Hill. New York 
504 |a Mucha, R.F., Herz, A., Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning (1985) Psychopharmacology, 86, pp. 274-280. , Berlin 
504 |a Rubinstein, M., Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 3995-4000 
504 |a Appleyard, S.M., A role for the endogenous opioid β-endorphin in energy homeostasis (2003) Endocrinology, 144, pp. 1753-1760 
504 |a Hodos, W., Progressive ratio as a measure of reward strength (1961) Science, 134, pp. 943-944 
504 |a Hayward, M.D., Low, M.J., The effect of naloxone on operant behavior for food reinforcers in DBA/2 mice (2001) Brain Res. Bull., 56, pp. 537-543 
504 |a Glass, M.J., The effect of naloxone on food-motivated behavior in the obese Zucker rat (1999) Psychopharmacology, 141, pp. 378-384. , Berlin 
504 |a Cleary, J., Naloxone effects on sucrose-motivated behavior (1996) Psychopharmacology, 126, pp. 110-114. , Berlin 
504 |a Rudski, J.M., Billington, C.J., Levine, A.S., Naloxone's effects on operant responding depend upon level of deprivation (1994) Pharmacol. Biochem. Behav., 49, pp. 377-383 
504 |a Nader, K., Bechara, A., Van Der Kooy, D., Neurobiological constraints on behavioral models of motivation (1997) Annu. Rev. Psychol., 48, pp. 85-114 
504 |a Hayward, M.D., Pintar, J.E., Low, M.J., Selective reward deficit in mice lacking beta-endorphin and enkephalin (2002) J. Neurosci., 22, pp. 8251-8258 
504 |a Kalra, S.P., Interacting appetite-regulating pathways in the hypothalamic regulation of body weight (1999) Endocr. Rev., 20, pp. 68-100 
504 |a Glass, M.J., Potency of naloxone's anorectic effect in rats is dependent on diet preference (1996) Am. J. Physiol., 271, pp. R217-R221 
504 |a Weldon, D.T., Effect of naloxone on intake of cornstarch, sucrose, and polycose diets in restricted and nonrestricted rats (1996) Am. J. Physiol., 270, pp. R1183-R1188 
504 |a Pritchard, L.E., Turnbull, A.V., White, A., Pro-opiomelanocortin processing in the hypothalamus: Impact on melanocortin signalling and obesity (2002) J. Endocrinol., 172, pp. 411-421 
504 |a Castro, M.G., Morrison, E., Post-translational processing of proopiomelanocortin in the pituitary and in the brain (1997) Crit. Rev. Neurobiol., 11, pp. 35-57 
504 |a Silva, R.M., Beta-endorphin-induced feeding: Pharmacological characterization using selective opioid antagonists and antisense probes in rats (2001) J. Pharmacol. Exp. Ther., 297, pp. 590-596 
504 |a Slugg, R.M., Effect of the mu-opioid agonist DAMGO on medial basal hypothalamic neurons in beta-endorphin knockout mice (2000) Neuroendocrinology, 72, pp. 208-217 
504 |a Mogil, J.S., Disparate spinal and supraspinal opioid antinociceptive responses in beta endorphin-deficient mutant mice (2000) Neuroscience, 101, pp. 709-717 
520 3 |a Feeding behavior can be divided into appetitive and consummatory phases, differing in neural substrates and effects of deprivation. Opioids play an important role in the appetitive aspects of feeding, but they also have acute stimulatory effects on food consumption. Because the opioid peptide β-endorphin is co-synthesized and released with melanocortins from proopiomelanocortin (POMC) neuronal terminals, we examined the physiological role of β-endorphin in feeding and energy homeostasis using a strain of mutant mice with a selective deficiency of β-endorphin. Male β-endorphin-deficient mice unexpectedly became obese with ad libitum access to rodent chow. Total body weight increased by 15% with a 50-100% increase in the mass of white fat. The mice were hyperphagic with a normal metabolic rate. Despite the absence of endogenous β-endorphin, the mutant mice did not differ from wild-type mice in their acute feeding responses to β-endorphin or neuropeptide Y administered intracerebroventricularly or naloxone administered intraperitoneally. Additional mice were studied using an operant behavioral paradigm to examine their acquisition of food reinforcers under increasing work demands. Food-deprived, β-endorphin-deficient male mice emitted the same number of lever presses under a progressive ratio schedule compared to wild-type mice. However, the mutant mice worked significantly less than did the wild-type mice for food reinforcers under nondeprived conditions. Controls for nonspecific effects on acquisition of conditioned learning, activity, satiety, and resistance to extinction revealed no genotype differences, supporting our interpretation that β-endorphin selectively affects a motivational component of reward behavior under nondeprived conditions. Therefore, we propose that β-endorphin may function in at least two primary modes to modulate feeding. In the appetitive phase, β-endorphin release increases the incentive value of food as a primary reinforcer. In contrast, it appears that endogenous β-endorphin may inhibit food consumption in parallel with melanocortins and that the orexigenic properties previously ascribed to it may actually be due to other classes of endogenous opioid peptides.  |l eng 
593 |a Vollum Institute, Oregon Health and Science University, Portland, OR 97239-3098, United States 
593 |a Dept. of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239-3098, United States 
593 |a Inst. Invest. Ing. Genet. Biol. M., Dept. of Physiol./Molec./Cell. Biol., University of Buenos Aires, Buenos Aires, 1428, Argentina 
690 1 0 |a DEPRIVATION STATE 
690 1 0 |a HYPERPHAGIA 
690 1 0 |a KNOCKOUT MICE 
690 1 0 |a METABOLIC RATE 
690 1 0 |a MOTIVATION 
690 1 0 |a OPERANT CONDITIONING 
690 1 0 |a OPIOID PEPTIDES 
690 1 0 |a REINFORCER 
690 1 0 |a SEXUAL DIMORPHISM 
690 1 0 |a Β-ENDORPHIN 
690 1 0 |a BETA ENDORPHIN 
690 1 0 |a MELANOCORTIN 
690 1 0 |a NALOXONE 
690 1 0 |a NEUROPEPTIDE Y 
690 1 0 |a OPIATE PEPTIDE 
690 1 0 |a PROOPIOMELANOCORTIN 
690 1 0 |a ADOLESCENT 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a APPETITE 
690 1 0 |a CONFERENCE PAPER 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ENERGY BALANCE 
690 1 0 |a FEEDING BEHAVIOR 
690 1 0 |a FEMALE 
690 1 0 |a FOOD DEPRIVATION 
690 1 0 |a FOOD INTAKE 
690 1 0 |a HORMONAL REGULATION 
690 1 0 |a HYPERPHAGIA 
690 1 0 |a INSTRUMENTAL CONDITIONING 
690 1 0 |a INTRACEREBROVENTRICULAR DRUG ADMINISTRATION 
690 1 0 |a INTRAPERITONEAL DRUG ADMINISTRATION 
690 1 0 |a KNOCKOUT MOUSE 
690 1 0 |a MALE 
690 1 0 |a METABOLIC RATE 
690 1 0 |a MOTIVATION 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a OBESITY 
690 1 0 |a REINFORCEMENT 
690 1 0 |a SEX DIFFERENCE 
690 1 0 |a STATE DEPENDENT LEARNING 
690 1 0 |a WHITE ADIPOSE TISSUE 
690 1 0 |a ANIMALIA 
690 1 0 |a RODENTIA 
700 1 |a Hayward, M.D. 
700 1 |a Appleyard, S.M. 
700 1 |a Rubinstein, M. 
773 0 |d New York Academy of Sciences, 2003  |g v. 994  |h pp. 192-201  |p Ann. New York Acad. Sci.  |x 00778923  |w (AR-BaUEN)CENRE-1541  |t Annals of the New York Academy of Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038051127&doi=10.1111%2fj.1749-6632.2003.tb03180.x&partnerID=40&md5=a7789667200382c5c7d1a4e8b9313ad6  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1749-6632.2003.tb03180.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00778923_v994_n_p192_Low  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00778923_v994_n_p192_Low  |y Registro en la Biblioteca Digital 
961 |a paper_00778923_v994_n_p192_Low  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 82603