Steady and traveling flows of a power-law liquid over an incline

The slow flow of thin liquid films on solid surfaces is an important phenomenon in nature and in industrial processes, and an intensive effort has been made to investigate it. So far research has been focused mainly on Newtonian fluids, notwithstanding that often in the real situations as well as in...

Descripción completa

Detalles Bibliográficos
Autor principal: Perazzo, Carlos Alberto
Otros Autores: Gratton, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06605caa a22007697a 4500
001 PAPER-21286
003 AR-BaUEN
005 20241015103429.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-2442450286 
030 |a JNFMD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Perazzo, Carlos Alberto 
245 1 0 |a Steady and traveling flows of a power-law liquid over an incline 
260 |c 2004 
270 1 0 |m Gratton, J.; INFIP Instituto de Fisica del Plasma, Facultad Ciencias Exactas Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina; email: jgratton@tinfip.lfp.uba.ar 
504 |a Mei, C.C., Nonlinear gravity waves in a thin sheet of viscous fluid (1966) J. Math. Phys., 45, pp. 266-288 
504 |a Buckmaster, J., Viscous sheets advancing over dry beds (1977) J. Fluid Mech., 81, pp. 735-756 
504 |a Huppert, H.E., The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface (1982) J. Fluid Mech., 121, pp. 43-58 
504 |a Gratton, J., Minotti, F., Self-similar viscous gravity currents: Phase-plane formalism (1990) J. Fluid Mech., 210, pp. 155-182 
504 |a Diez, J.A., Gratton, R., Gratton, J., Self-similar solution of the second kind for a convergent viscous gravity current (1992) Phys. Fluids A, 4, pp. 1148-1155 
504 |a Marino, B.M., Thomas, L.P., Gratton, R., Diez, J.A., Betelú, S., Gratton, J., Waiting-time solutions of a nonlinear diffusion equation: Experimental study of a creeping flow near a waiting front (1996) Phys. Rev. E, 54, pp. 2628-2636 
504 |a Berezin, Yu.A., Hutter, K., Spodareva, L.A., Stability analysis of gravity driven shear flows with free surface for power-law fluids (1998) Arch. Appl. Mech., 68, pp. 169-178 
504 |a Gratton, J., Minotti, F., Mahajan, S.M., Theory of creeping gravity currents of a non-Newtonian liquid (1999) Phys. Rev. E, 60, pp. 6960-6967 
504 |a Berezin, Yu.A., Chugunov, V.A., Hutter, K., Hydraulic jumps on shallow layers of non-Newtonian fluids (2001) J. Non-Newtonian Fluid Mech., 101, pp. 139-148 
504 |a Wilson, S.K., Duffy, B.R., Hunt, R., Slender rivulet of a power-law fluid driven by either gravity or a constant shear stress at the free surface (2002) Q. J. Mech. Appl. Math., 553, pp. 385-408 
504 |a Perazzo, C.A., Gratton, J., Thin film of non-Newtonian fluid on an incline (2003) Phys. Rev. E, 67, p. 16307 
504 |a Liu, K.F., Mei, C.C., Slow spreading of a sheet of Bingham fluid on an inclined plane (1989) J. Fluid Mech., 207, pp. 505-529 
504 |a Balmforth, N.J., Craster, R.V., A consistent thin-layer theory for Bingham plastics (1999) J. Non-Newtonian Fluid Mech., 84, pp. 65-81 
504 |a Balmforth, N.J., Craster, R.V., Sassi, R., Shallow viscoplastic flow on an inclined plane (2002) J. Fluid Mech., 470, pp. 1-29 
504 |a Ng, C.-O., Mei, C.C., Roll waves on a shallow layer of mud modelled as a power-law fluid (1994) J. Fluid Mech., 263, pp. 151-183 
504 |a Liu, K., Mei, C.C., Roll waves on a layer of a muddy fluid flowing down a gentle slope-a Bingham model (1994) Phys. Fluids, 6, pp. 2577-2590 
504 |a Huang, X., Garća, M.H., Herschel-Bulkley model for mud flow down a slope (1998) J. Fluid Mech., 374, pp. 305-333 
504 |a Coussot, P., (1997) Mudflow Rheology and Dynamics, IAHR Monograph Series, , A.A. Balkema Publishers, Lisse, The Netherlands, Chapter 9 
504 |a Hutter, K., (1983) Theoretical Glaciology, , D. Reidel, Dordrecht 
504 |a Byrd, R.B., Useful non-Newtonian models (1976) Ann. Rev. Fluid Mech., 8, pp. 13-34 
504 |a Bateman, H., (1953) Higher Transcendental Functions, 1. , McGraw-Hill, New York 
504 |a Whitham, G.B., (1974) Linear and Nonlinear Waves, , Wiley/Interscience, New York 
506 |2 openaire  |e Política editorial 
520 3 |a The slow flow of thin liquid films on solid surfaces is an important phenomenon in nature and in industrial processes, and an intensive effort has been made to investigate it. So far research has been focused mainly on Newtonian fluids, notwithstanding that often in the real situations as well as in the experiments, the rheology of the involved liquid is non-Newtonian. In this paper we investigate within the lubrication approximation the family of traveling wave solutions describing the flow of a power-law liquid on an incline. We derive general formulae for the traveling waves, that can be of several kinds according to the value of the propagation velocity c and of an integration constant j0 related to the difference between c and the averaged velocity of the fluid u. There are exactly 17 different kinds of solutions. Five of them are the steady solutions (c=0). In addition there are eight solutions that correspond to different downslope traveling waves, and four that describe waves traveling upslope. © 2004 Elsevier B.V. All rights reserved.  |l eng 
593 |a Universidad Favaloro, Buenos Aires 1078, Argentina 
593 |a INFIP Instituto de Fisica del Plasma, Facultad Ciencias Exactas Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina 
690 1 0 |a GRAVITY CURRENTS 
690 1 0 |a POWER-LAW LIQUID 
690 1 0 |a TRAVELING WAVES 
690 1 0 |a APPROXIMATION THEORY 
690 1 0 |a FLOW OF FLUIDS 
690 1 0 |a LUBRICATION 
690 1 0 |a RHEOLOGY 
690 1 0 |a THIN FILMS 
690 1 0 |a THIN LIQUID FILMS 
690 1 0 |a TRAVELING FLOWS 
690 1 0 |a TRAVELING UNSLOPE 
690 1 0 |a TRAVELING WAVES 
690 1 0 |a FLUID MECHANICS 
690 1 0 |a FLOW MODELING 
690 1 0 |a FLOW OVER SURFACE 
690 1 0 |a LUBRICATION 
690 1 0 |a NON-NEWTONIAN FLOW 
700 1 |a Gratton, J. 
773 0 |d 2004  |g v. 118  |h pp. 57-64  |k n. 1  |p J. Non-Newton. Fluid Mech.  |x 03770257  |w (AR-BaUEN)CENRE-5719  |t Journal of Non-Newtonian Fluid Mechanics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-2442450286&doi=10.1016%2fj.jnnfm.2004.02.003&partnerID=40&md5=84015bd77c988770a0088bdb968fa806  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jnnfm.2004.02.003  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03770257_v118_n1_p57_Perazzo  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03770257_v118_n1_p57_Perazzo  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_03770257_v118_n1_p57_Perazzo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion