Metal-catalyzed anaerobic disproportionation of hydroxylamine. Role of diazene and nitroxyl intermediates in the formation of N2, N 2O, NO+, and NH3

The catalytic disproportionation of NH2OH has been studied in anaerobic aqueous solution, pH 6-9.3, at 25.0 °C, with Na 3[Fe(CN)5NH3]·3H2O as a precursor of the catalyst, [FeII(CN)5H2O] 3-. The oxidation products are N2, N2O, and NO+ (bound in the nitroprusside ion, NP), and NH3 is the reduction pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alluisetti, G.E
Otros Autores: Almaraz, A.E, Amorebieta, V.T, Doctorovich, F., Olabe, J.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13739caa a22019817a 4500
001 PAPER-21161
003 AR-BaUEN
005 20230518205235.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-6344227963 
024 7 |2 cas  |a ammonia, 14798-03-9, 51847-23-5, 7664-41-7; hydroxylamine, 7803-49-8; nitrogen oxide, 11104-93-1; nitrogen, 7727-37-9; nitroprusside sodium, 14402-89-2, 15078-28-1; Ammonia, 7664-41-7; Ferric Compounds; Ferrous Compounds; Free Radicals; Hydroxylamine, 7803-49-8; Nitrogen Oxides; Nitrogen, 7727-37-9; nitroxyl, 14332-28-6 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JACSA 
100 1 |a Alluisetti, G.E. 
245 1 0 |a Metal-catalyzed anaerobic disproportionation of hydroxylamine. Role of diazene and nitroxyl intermediates in the formation of N2, N 2O, NO+, and NH3 
260 |c 2004 
270 1 0 |m Amorebieta, V.T.; Departamento de Química, Facultad de Ciencias Exactas, Univ. National de Mar del Plata, Funes y R. Peña, Mar del Plata B7602AYL, Argentina; email: amorebie@mdp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Buchner, W., Schliebs, R., Winter, O., Buchel, K.H., (1989) Industrial Inorganic Chemistry, pp. 52-55. , VCH Veriagsgeselischaft 
504 |a Hughes, M.N., (1981) The Inorganic Chemistry of Biological Processes, 2nd Ed., , Wiley: New York 
504 |a Hooper, A.B., (1989) Autotrophic Bacteria, , Schlegel, H. G., Bowien, B., Eds.; Science Tech Publishers 
504 |a Hendrich, M.P., Logan, M., Andersson, K.K., Arciero, D.M., Lipscomb, J.D., Hooper, A.B., (1994) J. Am. Chem. Soc., 116, pp. 11961-11968 
504 |a Hendrich, M.P., Petasis, D., Arciero, D.M., Hooper, A.B., (2001) J. Am. Chem. Soc., 123, pp. 2997-3005 
504 |a Upadhyay, A.K., Petasis, D.T., Arciero, D.M., Hooper, A.B., Hendrich, M.P., (2003) J. Am. Chem. Soc., 125, pp. 1738-1747 
504 |a Hendrich, M.P., Upadhyay, A.K., Riga, J., Arciero, D.M., Hooper, A.B., (2002) Biochemistry, 41, pp. 4603-4611 
504 |a Cabail, M.Z., Pacheco, A.A., (2003) Inorg. Chem., 42, pp. 270-272 
504 |a Allen, J.W.A., Watmough, N.J., Ferguson, S.J., (2000) Nat. Struct. Biol., 7, pp. 885-888 
504 |a Singh, J., (1973) Biochim. Biophys. Acta, 333, pp. 28-36 
504 |a Stach, P., Einsle, O., Schumacher, W., Kurun, E., Kroneck, P.M.H., (2000) J. Inorg. Biochem., 79, pp. 381-385 
504 |a Einsle, O., Messerschmidt, A., Huber, R., Kroneck, P.M.H., Neese, F., (2002) J. Am. Chem. Soc., 124, pp. 11737-11745 
504 |a Lui, S.M., Soriano, A., Cowan, J.A., (1993) J. Am. Chem. Soc., 115, pp. 10483-10486 
504 |a Crane, B.R., Siegel, L.M., Getzoff, E.D., (1997) Biochemistry, 36, pp. 12120-12137 
504 |a Feelisch, M., Stamler, J.S., (1996) Methods in Nitric Oxide Research, , Wiley: Chichester 
504 |a Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T., Janczuk, A.J., (2002) Chem. Rev., 102, pp. 1091-1134 
504 |a Wieghardt, K., (1984) Adv. Inorg. Bioinorg. Mech., 3, pp. 213-274 
504 |a Nast, R., Hieber, W., Proeschel, E., (1948) Z. Anorg. Allg. Chem., 13, p. 339 
504 |a Nast, R., Foppel, J., (1950) Z. Anorg. Allg. Chem., 263, p. 310 
504 |a Choi, I.K., Liu, Y., Wei, Z., Ryan, M.D., (1997) Inorg. Chem., 36, pp. 3113-3118 
504 |a Barley, M.H., Takeuchi, K.J., Meyer, T.J., (1986) J. Am. Chem. Soc., 108, pp. 5876-5885 
504 |a Bazylinski, D.A., Arkowitz, R.A., Hollocher, T.C., (1987) Arch. Biochem. Biophys., 259, pp. 520-526 
504 |a Castignetti, D., Hollocher, T.C., (1982) Appl. Environm. Microbiol., 44, pp. 923-928 
504 |a Baschi, S.N., Kleiner, D., (1990) Biochim. Biophys. Acta, 1041, pp. 9-13 
504 |a Lunak, S., Veprek-Siska, J., (1974) Collect. Czech. Chem. Commun., 39, pp. 41-48 
504 |a Lunak, S., Veprek-Siska, J., (1974) Collect. Czech. Chem. Commun., 39, pp. 391-395 
504 |a Bonner, F.T., Akhtar, M.J., (1981) Inorg. Chem., 20, pp. 3155-3160 
504 |a Lunak, S., Veprek-Siska, J., (1974) Collect. Czech. Chem. Commun., 39, pp. 2719-2723 
504 |a Macartney, D.H., (1988) Rev. Inorg. Chem., 6, pp. 101-151 
504 |a Baraldo, L.M., Forlano, P., Parise, A.R., Slep, L.D., Olabe, J.A., (2001) Coord. Chem. Rev., 219-221, pp. 881-921 
504 |a Olabe, J.A., (2004) Adv. Inorg. Chem., 55, pp. 61-126 
504 |a Banyai, I., Dozsa, L., Beck, M.T., Gyemant, G., (1996) J. Coord. Chem., 37, pp. 257-270 
504 |a Wolfe, S.K., Andrade, C., Swinehart, J.H., (1974) Inorg. Chem., 13, pp. 2567-2572 
504 |a Kenney, D.J., Flynn, T.P., Gallini, J.B., (1961) J. Inorg. Nucl. Chem., 20, pp. 75-81 
504 |a Toma, H.E., (1975) Inorg. Chim. Acta, 15, pp. 205-211 
504 |a Olabe, J.A., Zersa, H.O., (1983) Inorg. Chem., 22, pp. 4156-4158 
504 |a Bridsart, G.J., Waters, W.A., Wilson, I.R., (1973) J. Chem. Soc., Dalton Trans., pp. 1582-1584 
504 |a Espenson, J.H., Wolenuk Jr., S.G., (1972) Inorg. Chem., 11, pp. 2034-2041 
504 |a Siggia, S., Hanna, J.G., (1979) Quantitative Organic Analysis via Functional Groups, 4th Ed., , Wiley-Interscience 
504 |a Koroleff, F., (1976) Methods of Seawater Analysis, pp. 126-133. , Grasshoftt, K., Ed.; Verlag Chemie: New York 
504 |a Paliani, G., Poletti, A., Santucci, A., (1971) J. Mol. Struct., 8, pp. 63-74 
504 |a Szacilowski, K., Stochel, G., Stasicka, Z., Kisch, H., (1997) New J. Chem., 21, pp. 893-902 
504 |a Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L., Olabe, J.A., (2002) J. Am. Chem. Soc., 124, pp. 10307-10319 
504 |a Van Voorst, J.D.W., Hemmerich, P., (1966) J. Chem. Phys., 45, pp. 3914-3918 
504 |a Funai, I.A., Blesa, M.A., Olabe, J.A., (1989) Polyhedron, 8, pp. 419-426 
504 |a Katz, N.E., Olabe, J.A., Aymonino, P.J., (1977) J. Inorg. Nucl. Chem., 39, pp. 908-910 
504 |a Olabe, J.A., Gentil, L.A., (1983) Transition Met. Chem., 8, pp. 65-69 
504 |a Gear, C.W., (1971) Comun. ACM, 14, p. 176 
504 |a Emschwiller, G.C.R., (1967) Acad. Sci. Paris, 265, pp. 281-284 
504 |a Emschwiller, G., Jorgensen, C.K., (1970) Chem. Phys. Lett., 5, pp. 561-563 
504 |a Souto, M.F., Cukiernik, F.D., Forlano, P., Olabe, J.A., (2001) J. Coord. Chem., 54, pp. 343-353 
504 |a Kochi, J.K., (1973) Free Radicals, 2. , Wiley 
504 |a Corvaja, C., Fischer, H., Giacometti, G., (1965) Z. Physik. Chem. Neue Folge, 45, pp. 1-19 
504 |a Neta, P., Maruthamuthu, P., Carton, P.M., Fessenden, R.W., (1978) J. Phys. Chem., 82, pp. 1875-1878 
504 |a note; Lehnert, N., Wiesler, B.E., Tuczek, F., Hennige, A., Sellmann, D., (1997) J. Am. Chem. Soc., 119, pp. 8879-8888 
504 |a (1997) J. Am. Chem. Soc., 119, pp. 8869-8878 
504 |a Silverstein, R.M., Webster, F.X., (1997) Spectrometric Identification of Organic Compounds, 6th Ed., , Wiley 
504 |a Mason, J., (1981) Chem. Rev., 81, pp. 205-227 
504 |a Stanbury, D.M., (1998) Prog. Inorg. Chem., 47, pp. 511-561 
504 |a Back, R.A., (1984) Rev. Chem. Intermed., 5, pp. 293-323 
504 |a Hunig, S., Muller, H.R., Thier, W., (1961) Tetrahedron Lett., 11, pp. 353-357 
504 |a Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, pp. 1039-1045 
504 |a Malin, J.M., Koch, R.C., (1978) Inorg. Chem., 17, pp. 752-754 
504 |a Davies, G., Garafalo, A.R., (1976) Inorg. Chim. Acta, 19, pp. L3-L4 
504 |a Davies, G., Garafalo, A.R., (1976) Inorg. Chem., 15, pp. 1101-1106 
504 |a Toma, H.E., Batista, A.A., Gray, H.B., (1982) J. Am. Chem. Soc., 104, pp. 7509-7515 
504 |a Fasman, G.D., (1976) Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data, 1. , CRC Press: Cleveland, OH 
504 |a Stanbury, D.M., (1989) Adv. Inorg. Chem., 33, pp. 69-138 
504 |a Jones, C.W., (1999) Applications of Hydrogen Peroxide and Derivatives, p. 44. , The Royal Society of Chemistry: U.K 
504 |a Benson, S.W., (1960) Foundations of Chemical Kinetics, , McGraw-Hill Book Co.: New York 
504 |a Bonner, F.T., Dzelzkalns, L.S., Bonucci, J.A., (1978) Inorg. Chem., 17, pp. 2487-2494 
504 |a Akhtar, M.J., Bonner, F.T., Borer, A., Cooke, I., Hughes, M.N., (1987) Inorg. Chem., 26, pp. 4379-4382 
504 |a Southern, J.S., Hillhouse, G.L., (1997) J. Am. Chem. Soc., 119, pp. 12406-12407 
504 |a Bartberger, M.D., Fukuto, J.M., Houk, K.N., (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 2194-2198 
504 |a Shafirovich, V., Lymar, S.V., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 7340-7345 
504 |a Sulc, F., Immoos, C.E., Pervitsky, D., Farmer, P.J., (2004) J. Am. Chem. Soc., 126, pp. 1096-1101 
504 |a Laszlo, B., Alfassi, Z.B., Neta, P., Huie, R.E., (1998) J. Phys. Chem. A, 102, pp. 8498-8504 
504 |a note; Mulvey, D., Waters, W.A., (1975) J. Chem. Soc., Dalton Trans., pp. 951-959 
504 |a Smith III, M.R., Cheng, T.Y., Hillhouse, G.L., (1993) J. Am. Chem. Soc., 115, pp. 8638-8642 
504 |a Cheng, T.Y., Ponce, A., Rheingold, A.L., Hillhouse, G.L., (1994) Angew. Chem., Int. Ed. Engl., 33, pp. 657-659 
504 |a Marchenko, A.V., Vedemikow, A.N., Dye, D.F., Pink, M., Zaleski, J.M., Caulton, K.G., (2004) Inorg. Chem., 43, pp. 351-360 
504 |a note; Caulton, K.G., (1975) Coord. Chem. Rev., 14, pp. 317-355 
504 |a Johnson, M.D., Hornstein, B.J., (2003) Inorg. Chem., 42, pp. 6923-6928 
504 |a Gonzalez Lebrero, M.C., Scherlis, D.A., Estiú, G.L., Olabe, J.A., Estrin, D.A., (2001) Inorg. Chem., 40, pp. 4127-4133 
504 |a James, A.D., Murray, R.S., (1977) J. Chem. Soc., Dalton Trans., pp. 326-329 
504 |a note 
520 3 |a The catalytic disproportionation of NH2OH has been studied in anaerobic aqueous solution, pH 6-9.3, at 25.0 °C, with Na 3[Fe(CN)5NH3]·3H2O as a precursor of the catalyst, [FeII(CN)5H2O] 3-. The oxidation products are N2, N2O, and NO+ (bound in the nitroprusside ion, NP), and NH3 is the reduction product. The yields of N2/N2O increase with pH and with the concentration of NH2OH. Fast regime conditions involve a chain process initiated by the NH2 radical, generated upon coordination of NH2OH to [FeII(CN)5H 2O]3-. NH3 and nitroxyl, HNO, are formed in this fast process, and HNO leads to the production of N2, N 2O, and NP. An intermediate absorbing at 440 nm is always observed, whose formation and decay depend on the medium conditions. It was identified by UV-vis, RR, and 15NMR spectroscopies as the diazene-bound [Fe II(CN)5N2H2]3- ion and is formed in a competitive process with the radical path, still under the fast regime. At high pH's or NH2OH concentrations, an inhibited regime is reached, with slow production of only N2 and NH3. The stable red diazene-bridged [(NC)5FeHN=NHFe(CN)5] 6- ion is formed at an advanced degree of NH2OH consumption.  |l eng 
593 |a Departamento de Química, Facultad de Ciencias Exactas, Univ. National de Mar del Plata, Funes y R. Peña, Mar del Plata B7602AYL, Argentina 
593 |a Depto. Quim. Inorg./Analit./Quim. F., INQUIMAE, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina 
690 1 0 |a CATALYSIS 
690 1 0 |a CATALYST ACTIVITY 
690 1 0 |a COORDINATION REACTIONS 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 
690 1 0 |a OXIDATION 
690 1 0 |a PH EFFECTS 
690 1 0 |a REDUCTION 
690 1 0 |a ULTRAVIOLET SPECTROSCOPY 
690 1 0 |a CATALYTIC DISPROPORTIONATION 
690 1 0 |a DIAZENE 
690 1 0 |a AMINES 
690 1 0 |a AMMONIA 
690 1 0 |a AZO COMPOUND 
690 1 0 |a DIAZENE DERIVATIVE 
690 1 0 |a FREE RADICAL 
690 1 0 |a HYDROXYLAMINE 
690 1 0 |a NITROGEN 
690 1 0 |a NITROGEN OXIDE 
690 1 0 |a NITROPRUSSIDE SODIUM 
690 1 0 |a NITROXYL DERIVATIVE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ABSORPTION SPECTROSCOPY 
690 1 0 |a ANAEROBIC METABOLISM 
690 1 0 |a AQUEOUS SOLUTION 
690 1 0 |a ARTICLE 
690 1 0 |a CATALYST 
690 1 0 |a CHEMICAL REACTION 
690 1 0 |a DISPROPORTIONATION REACTION 
690 1 0 |a GAS 
690 1 0 |a NITROGEN NUCLEAR MAGNETIC RESONANCE 
690 1 0 |a RAMAN SPECTROMETRY 
690 1 0 |a REDUCTION 
690 1 0 |a STOICHIOMETRY 
690 1 0 |a TEMPERATURE 
690 1 0 |a AMMONIA 
690 1 0 |a CATALYSIS 
690 1 0 |a FERRIC COMPOUNDS 
690 1 0 |a FERROUS COMPOUNDS 
690 1 0 |a FREE RADICALS 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a HYDROXYLAMINE 
690 1 0 |a KINETICS 
690 1 0 |a NITROGEN 
690 1 0 |a NITROGEN OXIDES 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a SPECTRUM ANALYSIS, RAMAN 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a ANAEROBIOSIS 
700 1 |a Almaraz, A.E. 
700 1 |a Amorebieta, V.T. 
700 1 |a Doctorovich, F. 
700 1 |a Olabe, J.A. 
773 0 |d 2004  |g v. 126  |h pp. 13432-13442  |k n. 41  |p J. Am. Chem. Soc.  |x 00027863  |w (AR-BaUEN)CENRE-19  |t Journal of the American Chemical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-6344227963&doi=10.1021%2fja046724i&partnerID=40&md5=39f578b99bd0955a4d0f5b694022116e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ja046724i  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00027863_v126_n41_p13432_Alluisetti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v126_n41_p13432_Alluisetti  |y Registro en la Biblioteca Digital 
961 |a paper_00027863_v126_n41_p13432_Alluisetti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 82114