Heparan sulfate, heparin, and heparinase activity detection on polyacrylamide gel electrophoresis using the fluorochrome tris(2,2′-bipyridine) ruthenium

The paper shows the ability of the fluorochrome tris(2,2′-bipyridine) ruthenium (II) (Rubipy) to detect heparan sulfate, heparin, and heparinase activity of M3 murine mammary adenocarcinoma cells as well as bacterial heparinases I, II, and III in native polyacrylamide gel electrophoresis (PAGE). The...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rozenberg, G.I
Otros Autores: Espada, J., de Cidre, L.L, Eiján, A.M, Calvo, J.C, Bertolesi, G.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The paper shows the ability of the fluorochrome tris(2,2′-bipyridine) ruthenium (II) (Rubipy) to detect heparan sulfate, heparin, and heparinase activity of M3 murine mammary adenocarcinoma cells as well as bacterial heparinases I, II, and III in native polyacrylamide gel electrophoresis (PAGE). The technique is based on the electrophoretic mobility of high molecular weight heparins and subsequent staining with Rubipy (50 μg/mL). The minimum content of heparin detected by fluorescence in a UV transilluminator was 25-50 ng. The number of Rubipy molecules bound to heparin, determined in relationship to the number of disaccharide units (DU), showed that two to six heparin disaccharide units are bound by each fluorochrome molecule. Scatchard plot analysis showed one Rubipy-binding site (Kd= (8.56 ± 2.97) × 10-5 M). Heparinase activity was determined by densitometric analysis of the fluorescence intensity of the heparin-containing band of the gel. While heparinase I (EC 4.2.2.7.) degraded heparin and, to a lower degree, partially N-desulfated N-acetylated heparin (N-des N-Ac), heparinase II (no EC number) could efficiently degrade heparan sulfate (HS) and partially N-des N-Ac heparin. Finally, heparinase III (EC 4.2.2.8.) degraded HS almost exclusively. Only heparin and N-des N-Ac heparin were substrates for M3 tumor cell heparinases. We describe a qualitative, sensitive and simple method to detect heparinase activity and determine its substrate specificity using Rubipy fluorescence with heparin and heparan sulfate in multiple biological samples tested in parallel.
Bibliografía:Casu, B., (1985) Adv. Carbohydr. Chem. Biochem., 43, pp. 51-134
Linhardt, R.J., Turnbull, J.E., Wang, H.M., Loganathan, D., Gallagher, J.T., (1990) Biochem., 29, pp. 2611-2617
Jandik, K.A., Gu, K., Linhardt, R.J., (1994) Glycobiol., 4, pp. 289-296
Matzner, Y., Bar-Ner, M., Yahalom, J., Ishai-Michaeli, R., Fuks, Z., Voldavsky, I., (1985) J. Clin. Invest., 76, pp. 1306-1313
Bashkin, P., Razin, E., Eldor, A., Vlodavsky, I., (1990) Blood, 75, pp. 2204-2212
Vlodavsky, I., Eldor, A., Hairnovitz-Friedman, A., Matzner, Y., Ishai-Michaeli, R., Lider, O., Naparstek, Y., Fuks, Z., (1992) J. Invas. Metast., 12, pp. 112-127
Nakajima, M., Irimura, T., Nicolson, G.L., (1988) J. Cell. Biochem., 36, pp. 157-167
Jin, L., Nakajima, M., Nicolson, G.L., (1990) Int. J. Cancer, 45, pp. 1088-1095
Vlodavsky, I., Friedmann, Y., Elkin, M., Aingorn, H., Atzmon, R., Ishai-Michaeli, R., Bian, M., Pecker, I., (1999) Nature Med., 5, pp. 793-802
Hulett, M.D., Freeman, C., Hamdorf, B.J., Baker, R.T., Harris, M.J., Parish, C.R., (1999) Nature Med., 5, pp. 803-809
Nakajima, M., Irimura, T., Di Ferrante, D., Di Ferrante, N., Nicolson, G.L., (1983) Science, 220, pp. 611-613
De Vouge, M.W., Yamazaki, A., Bennett, S.A., Chen, J.H., Shwed, P.S., Couture, C., Birnboim, H.C., (1994) Int. J. Cancer, 56, pp. 286-294
Al-Hakim, A., Linhardt, R.J., (1991) Appl. Theor. Electrophor., 1, pp. 305-312
Linker, A., Hovingh, P., (1972) Biochemistry, 11, pp. 563-568
Bertolesi, G.E., Trigoso, C.I., Espada, J., Stockert, J.C., (1995) J. Histochem. Cytochem., 43, pp. 537-543
Bertolesi, G.E., Stockert, J.C., Lauría de Cidre, L., (1997) Int. J. Oncol., 11, pp. 1221-1225
Kelly, J.M., Tossi, A.M., McConnell, D.J., OhUigin, C., (1985) Nucleic Acids Res., 13, pp. 6017-6034
Bitter, T., Muir, H.M., (1962) Anal. Biochem., 4, pp. 330-334
Laemmli, U.K., (1970) Nature, 227, pp. 680-685
Munson, P.J., Rodbard, D., (1980) Anal. Biochem., 107, pp. 220-239
Bal de Kier Joffé, E., Puricelli, L., Vidal, M.C., Sacerdote de Lustig, E., (1983) J. Exp. Clin. Cancer Res., 2, pp. 151-160
Bal de Kier Joffé, E., Puricelli, L., Sacerdote de Lustig, E., (1986) Invasion Metastasis, 6, pp. 302-312
Johnson, E.A., Mulloy, B., (1976) Carbohydr. Res., 51, pp. 119-127
Tas, J., Roozemond, R.C., (1973) Histochem. J., 5, pp. 425-436
Stone, A.L., Bradley, D.F., (1967) Biochim Biophys. Acta, 148, pp. 172-192
Desai, U.R., Wang, H., Ampofo, S.A., Linhardt, R.J., (1993) Anal. Biochem., 213, pp. 120-127
Rusnati, M., Tulipano, G., Spillman, D., Tanghetti, E., Oreste, P., Zoppetti, G., Gliacca, M., Presta, M.J., (1999) Biol. Chem., 274, pp. 28198-28205
Nader, H.B., Porcionatto, M.A., Tersariol, I.L.S., Pinhal, M.A.S., Oliveira, F.W., Moraes, C.T., Dietrich, C.P., (1990) J. Biol. Chem., 265, pp. 16807-16813
Sasisekharan, R., Bulmer, M., Moremen, K.W., Cooney, C.L., Langer, R., (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 3660-3664
Bar-Ner, M., Eldor, A., Wasserman, L., Matzner, Y., Cohen, I.R., Fuks, Z., Vlodavsky, I., (1987) Blood, 70, pp. 551-557
Bertolesi, G.E., Lauría de Cidre, L., Sacerdote de Lustig, E., Eiján, A.M., (1995) Cancer Lett., 90, pp. 123-131
Brzu, T., Pascal, M., Maman, M., Roque, C., Lafont, F., Rousselet, A., (1996) J. Cell. Physiol., 167, pp. 8-21
Khan, M.Y., Newman, S.A., (1991) Anal. Biochem., 196, pp. 373-376
ISSN:01730835
DOI:10.1002/1522-2683(200101)22:1<3::AID-ELPS3>3.0.CO;2-G