Heparan sulfate, heparin, and heparinase activity detection on polyacrylamide gel electrophoresis using the fluorochrome tris(2,2′-bipyridine) ruthenium
The paper shows the ability of the fluorochrome tris(2,2′-bipyridine) ruthenium (II) (Rubipy) to detect heparan sulfate, heparin, and heparinase activity of M3 murine mammary adenocarcinoma cells as well as bacterial heparinases I, II, and III in native polyacrylamide gel electrophoresis (PAGE). The...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
2001
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | The paper shows the ability of the fluorochrome tris(2,2′-bipyridine) ruthenium (II) (Rubipy) to detect heparan sulfate, heparin, and heparinase activity of M3 murine mammary adenocarcinoma cells as well as bacterial heparinases I, II, and III in native polyacrylamide gel electrophoresis (PAGE). The technique is based on the electrophoretic mobility of high molecular weight heparins and subsequent staining with Rubipy (50 μg/mL). The minimum content of heparin detected by fluorescence in a UV transilluminator was 25-50 ng. The number of Rubipy molecules bound to heparin, determined in relationship to the number of disaccharide units (DU), showed that two to six heparin disaccharide units are bound by each fluorochrome molecule. Scatchard plot analysis showed one Rubipy-binding site (Kd= (8.56 ± 2.97) × 10-5 M). Heparinase activity was determined by densitometric analysis of the fluorescence intensity of the heparin-containing band of the gel. While heparinase I (EC 4.2.2.7.) degraded heparin and, to a lower degree, partially N-desulfated N-acetylated heparin (N-des N-Ac), heparinase II (no EC number) could efficiently degrade heparan sulfate (HS) and partially N-des N-Ac heparin. Finally, heparinase III (EC 4.2.2.8.) degraded HS almost exclusively. Only heparin and N-des N-Ac heparin were substrates for M3 tumor cell heparinases. We describe a qualitative, sensitive and simple method to detect heparinase activity and determine its substrate specificity using Rubipy fluorescence with heparin and heparan sulfate in multiple biological samples tested in parallel. |
---|---|
Bibliografía: | Casu, B., (1985) Adv. Carbohydr. Chem. Biochem., 43, pp. 51-134 Linhardt, R.J., Turnbull, J.E., Wang, H.M., Loganathan, D., Gallagher, J.T., (1990) Biochem., 29, pp. 2611-2617 Jandik, K.A., Gu, K., Linhardt, R.J., (1994) Glycobiol., 4, pp. 289-296 Matzner, Y., Bar-Ner, M., Yahalom, J., Ishai-Michaeli, R., Fuks, Z., Voldavsky, I., (1985) J. Clin. Invest., 76, pp. 1306-1313 Bashkin, P., Razin, E., Eldor, A., Vlodavsky, I., (1990) Blood, 75, pp. 2204-2212 Vlodavsky, I., Eldor, A., Hairnovitz-Friedman, A., Matzner, Y., Ishai-Michaeli, R., Lider, O., Naparstek, Y., Fuks, Z., (1992) J. Invas. Metast., 12, pp. 112-127 Nakajima, M., Irimura, T., Nicolson, G.L., (1988) J. Cell. Biochem., 36, pp. 157-167 Jin, L., Nakajima, M., Nicolson, G.L., (1990) Int. J. Cancer, 45, pp. 1088-1095 Vlodavsky, I., Friedmann, Y., Elkin, M., Aingorn, H., Atzmon, R., Ishai-Michaeli, R., Bian, M., Pecker, I., (1999) Nature Med., 5, pp. 793-802 Hulett, M.D., Freeman, C., Hamdorf, B.J., Baker, R.T., Harris, M.J., Parish, C.R., (1999) Nature Med., 5, pp. 803-809 Nakajima, M., Irimura, T., Di Ferrante, D., Di Ferrante, N., Nicolson, G.L., (1983) Science, 220, pp. 611-613 De Vouge, M.W., Yamazaki, A., Bennett, S.A., Chen, J.H., Shwed, P.S., Couture, C., Birnboim, H.C., (1994) Int. J. Cancer, 56, pp. 286-294 Al-Hakim, A., Linhardt, R.J., (1991) Appl. Theor. Electrophor., 1, pp. 305-312 Linker, A., Hovingh, P., (1972) Biochemistry, 11, pp. 563-568 Bertolesi, G.E., Trigoso, C.I., Espada, J., Stockert, J.C., (1995) J. Histochem. Cytochem., 43, pp. 537-543 Bertolesi, G.E., Stockert, J.C., Lauría de Cidre, L., (1997) Int. J. Oncol., 11, pp. 1221-1225 Kelly, J.M., Tossi, A.M., McConnell, D.J., OhUigin, C., (1985) Nucleic Acids Res., 13, pp. 6017-6034 Bitter, T., Muir, H.M., (1962) Anal. Biochem., 4, pp. 330-334 Laemmli, U.K., (1970) Nature, 227, pp. 680-685 Munson, P.J., Rodbard, D., (1980) Anal. Biochem., 107, pp. 220-239 Bal de Kier Joffé, E., Puricelli, L., Vidal, M.C., Sacerdote de Lustig, E., (1983) J. Exp. Clin. Cancer Res., 2, pp. 151-160 Bal de Kier Joffé, E., Puricelli, L., Sacerdote de Lustig, E., (1986) Invasion Metastasis, 6, pp. 302-312 Johnson, E.A., Mulloy, B., (1976) Carbohydr. Res., 51, pp. 119-127 Tas, J., Roozemond, R.C., (1973) Histochem. J., 5, pp. 425-436 Stone, A.L., Bradley, D.F., (1967) Biochim Biophys. Acta, 148, pp. 172-192 Desai, U.R., Wang, H., Ampofo, S.A., Linhardt, R.J., (1993) Anal. Biochem., 213, pp. 120-127 Rusnati, M., Tulipano, G., Spillman, D., Tanghetti, E., Oreste, P., Zoppetti, G., Gliacca, M., Presta, M.J., (1999) Biol. Chem., 274, pp. 28198-28205 Nader, H.B., Porcionatto, M.A., Tersariol, I.L.S., Pinhal, M.A.S., Oliveira, F.W., Moraes, C.T., Dietrich, C.P., (1990) J. Biol. Chem., 265, pp. 16807-16813 Sasisekharan, R., Bulmer, M., Moremen, K.W., Cooney, C.L., Langer, R., (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 3660-3664 Bar-Ner, M., Eldor, A., Wasserman, L., Matzner, Y., Cohen, I.R., Fuks, Z., Vlodavsky, I., (1987) Blood, 70, pp. 551-557 Bertolesi, G.E., Lauría de Cidre, L., Sacerdote de Lustig, E., Eiján, A.M., (1995) Cancer Lett., 90, pp. 123-131 Brzu, T., Pascal, M., Maman, M., Roque, C., Lafont, F., Rousselet, A., (1996) J. Cell. Physiol., 167, pp. 8-21 Khan, M.Y., Newman, S.A., (1991) Anal. Biochem., 196, pp. 373-376 |
ISSN: | 01730835 |
DOI: | 10.1002/1522-2683(200101)22:1<3::AID-ELPS3>3.0.CO;2-G |