Surface Behavior of Aprotic Mixtures: Dimethyl Sulfoxide/Acetonitrile

We present results from molecular dynamics simulations that examine microscopic characteristics of mixtures combining acetonitrile (ACN) and dimethyl sulfoxide (DMSO) at the vicinity of liquid/air and liquid/graphene interfaces. In the former interfaces, our simulations reveal a clear propensity of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rodriguez, J.
Otros Autores: Elola, M.D, Martí, J., Laria, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16769caa a22013097a 4500
001 PAPER-17659
003 AR-BaUEN
005 20230518204900.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85024923980 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Rodriguez, J. 
245 1 0 |a Surface Behavior of Aprotic Mixtures: Dimethyl Sulfoxide/Acetonitrile 
260 |b American Chemical Society  |c 2017 
270 1 0 |m Laria, D.; Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, Argentina; email: dhlaria@cnea.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a McGann, L.E., Walterson, M.L., Cryoprotection by Dimethyl Sulfoxide and Dimethyl Sulfone (1987) Cryobiology, 24, pp. 11-16 
504 |a Dorsey, J.G., Dill, K.A., The Molecular Mechanism of Retention in Reversed-Phase Liquid Chromatography (1989) Chem. Rev., 89, pp. 331-346 
504 |a Huggins, R., (2015) Energy Storage: Fundamentals, Materials and Applications, , Springer: New York 
504 |a David, N.A., The Pharmacology of Dimethyl Sulfoxide (1972) Annu. Rev. Pharmacol., 12, pp. 353-374 
504 |a De Gouw, J.A., Warneke, C., Parrish, D.D., Holloway, J.S., Trainer, M., Fehsenfeld, F.C., Emission Sources and Ocean Uptake of Acetonitrile (CH3CH) in the Atmosphere (2003) J. Geophys. Res., 108, pp. ACH21-ACH28 
504 |a Cooke, C., McCallum, C., Pethybridge, A.S., Prue, J.E., Conductance of Acids in Dimethylsulfoxide-I. Conductance of Hydrochloric Acid in DMSO-Water Mixtures at 25°C (1975) Electrochim. Acta, 20, pp. 591-598 
504 |a Kolthoff, I.M., Bruckenstein, S., Chantooni, M.K., Jr., Acid-Base Equilibria in Acetonitrile. Spectrophotometric and Conductometric Determination of the Dissociation of Various Acids (1961) J. Am. Chem. Soc., 83, pp. 3927-3935 
504 |a Laria, D., Kapral, R., Estrin, D., Ciccotti, G., Molecular Dynamics Study of Solvation Effects on Acid Dissociation in Aprotic Media (1996) J. Chem. Phys., 104, pp. 6560-6568 
504 |a Semino, R., Zaldívar, G., Calvo, E.J., Laria, D., Lithium Solvation in Dimethyl Sulfoxide Acetonitrile Mixtures (2014) J. Chem. Phys., 141, p. 214509 
504 |a Mozhzhukhina, N., Longinotti, M.P., Corti, H., Calvo, E.J., A Conductivity Study of Preferential Solvation of Lithium Ion in Acetonitrile-Dimethyl Sulfoxide Mixtures (2015) Electrochim. Acta, 154, pp. 456-461 
504 |a Bernardi, E., Stassen, H., Molecular Dynamics Simulations of Acentonitrile/Dimethylsulfoxide Liquid Mixtures (2004) J. Chem. Phys., 120, pp. 4860-4867 
504 |a Fort, J., Moore, W.R., Adiabatic Compressibilities of Binary Liquid Mixtures (1965) Trans. Faraday Soc., 61, pp. 2102-2111 
504 |a Mountain, R.D., Molecular Dynamics Simulation of Water-Acetonitrile Mixtures in a Silica Slit (2013) J. Phys. Chem. C, 117, pp. 3923-3929 
504 |a Allen, H.C., Raymond, E.A., Richmond, G.L., Non-Linear Vibrational Sum Frequency Spectroscopy of Atmospherically Relevant Molecules at Aqueous Solution Surfaces (2000) Curr. Opin. Colloid Interface Sci., 5, pp. 74-80 
504 |a Makowski, M.J., Stern, A.C., Hemminger, J.C., Tobias, D.J., Orientation and Structure of Acetonitrile in Water at the Liquid-Vapor Interface: A Molecular Dynamics Simulation Study (2016) J. Phys. Chem. C, 120, pp. 17555-17563 
504 |a Zhang, D., Gutow, J.H., Eisenthal, K.B., Heinz, T.F., Sudden Structural Change at the Air/Binary Liquid Interface: Sum Frequency Study of the Air/Acentonitrile Interface (1993) J. Chem. Phys., 98, pp. 5099-5101 
504 |a Allen, H.C., Gragson, D.E., Richmond, G.L., Molecular Structure and Adsorption of Dimethyl Sulfoxide at the Surface of Aqueous solutions (1999) J. Phys. Chem. B, 103, pp. 660-666 
504 |a Fábián, B., Idrissi, A., Marekha, B., Jedlovszky, P., Local Lateral Environment of the Molecules at the Surface of DMSO-Water Mixtures (2016) J. Phys.: Condens. Matter, 28, p. 404002 
504 |a Rivera, C.A., Bender, J.S., Manfred, K., Fourkas, J.T., Persistence of Acetonitrile Bilayers at the Interface Acetonitrile/Water Mixtures with Silica (2013) J. Phys. Chem. A, 117, pp. 12060-12066 
504 |a Idrissi, A., Marekha, B., Kiselev, M., Jedlovszky, P., The Local Environment of Molecules in Water-DMSO Mixtures, as seen from Computer Simulations and Voronoi Polyhedra Analysis (2015) Phys. Chem. Chem. Phys., 17, pp. 3470-3481 
504 |a Mountain, R.D., Microsctructure and Hydrogen Bonding in Water-Acetonitrile Mixtures (2010) J. Phys. Chem. B, 114, pp. 16460-16464 
504 |a Fábián, B., Jójárt, B., Horvai, G., Jedlovszky, P., Properties of the Liquid-Vapor Interface of Acetone-Water Mixtures. A Computer Simulation and ITIM Analysis Study (2015) J. Phys. Chem. C, 119, pp. 12473-12487 
504 |a Pártay, L.B., Jedlovszky, P., Horvai, G., Structure of the Liquid-Vapor Interface of Water-Acetonitrile Mixtures as seen from Molecular Dynamics Simulations and Identification of Truly Interfacial Molecules Analysis (2009) J. Phys. Chem. C, 113, pp. 18173-18183 
504 |a Bresme, F., Chacón, P., Tarazona, Tay, K., Intrinsic Structure of Hydrophonic Surfaces: The Oil-Water Interface (2008) Phys. Rev. Lett., 101, p. 056102 
504 |a Remsing, R.C., Rodgers, J.M., Weeks, J.D., Deconstruction Classical Water Models at Interfaces and in Bulk (2011) J. Stat. Phys., 145, pp. 313-334 
504 |a Willard, A.P., Chandler, D., The Molecular Structure of the Interface between Water and a Hydrophobic Substrate is Liquid-Vapor Like (2014) J. Chem. Phys., 141, p. 18C519 
504 |a Rodriguez, J., Elola, M.D., Laria, D., Coaxial Cross-Diffusion through Carbon Nanotubes (2009) J. Phys. Chem. B, 113, pp. 14844-14848 
504 |a Grande, L., Paillard, E., Hassoun, J., Park, J.-B., Lee, Y.-J., Sun, Y.-K., Passerini, S., Scrosati, B., The Lithium/Air Battery: Still an Emerging System or a Practical Reality? (2015) Adv. Mater., 27, pp. 784-800 
504 |a Nosé, S., Unified Formulation of the Constant Temperature Molecular-Dynamics Methods (1984) J. Chem. Phys., 81, pp. 511-519 
504 |a Hoover, W.G., Canonical Dynamics: Equilibrium Phase-Space Distributions (1985) Phys. Rev. A: At., Mol., Opt. Phys., 31, pp. 1695-1697 
504 |a Strader, M., Feller, S.E., Flexible All-Atom Model of Dimethyl Sulfoxide for Molecular Dynamics Simulations (2002) J. Phys. Chem. A, 106, pp. 1074-1080 
504 |a Nikitin, A.M., Lyubartsev, A.P., New Six-site Acetonitrile Model for Simulations of Liquid Acetonitrile and its Aqueous Mixtures (2007) J. Comput. Chem., 28, pp. 2020-2026 
504 |a Phillips, C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable Molecular Dynamics with NAMD (2005) J. Comput. Chem., 26, pp. 1781-1802 
504 |a Foloppe, N., Mac Kerrell, A.D., Jr., All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condesed Phase Macromolecular Target Data (2000) J. Comput. Chem., 21, pp. 86-104 
504 |a Merlet, C., Péan, C., Rotenberg, P.A., Simon, B., Madden, P., Salanne, M., Simulating Supercapacitors: Can We Model Electrodes as Constant Charge Surfaces? (2013) J. Phys. Chem. Lett., 4, pp. 264-268 
504 |a Siepmann, J.I., Sprik, M., Influence of Surface Topology and Electrostatic Potential on Water/Electrode Systems (1995) J. Chem. Phys., 102, pp. 511-524 
504 |a Wang, Z., Yang, Y., Olmsted, D.L., Asta, M., Laird, B.B., Evaluation of the Constant Potential Method in Simulating Electric Double-Layer Capacitors (2014) J. Chem. Phys., 141, p. 184102 
504 |a Chacón, E., Tarazona, P., Intrinsic Profiles beyond the Capillary Wave Theory: A Monte Carlo Study (2003) Phys. Rev. Lett., 91, p. 166103 
504 |a Chacón, E., Tarazona, P., Alejandre, J., The Intrinsic Structure of the Water Surface (2006) J. Chem. Phys., 125, p. 014709 
504 |a Fern, J.R., Keffer, D.J., Steele, W.V., Vapor-Liquid Equilibrium of Ethanol by Molecular Dyanamics Simulation and Voronoi Tesselation (2007) J. Phys. Chem. B, 111, pp. 13278-13286 
504 |a Willard, A., Chandler, D., Instantaneous Liquid Interfaces (2010) J. Phys. Chem. B, 114, pp. 1954-1958 
504 |a Jorge, M., Jedlovszky, P., Cordeiro, M.N.D.S., A Critical Assessment of Methods for the Intrisic Analysis of Liquid Interface. 1. Surface Site Distributions (2010) J. Phys. Chem. C, 114, pp. 11169-11179 
504 |a Pártay, L.B., Hantal, G., Jedlovszky, P., Vincze, A., Horvai, G., A New Method for Determining the Interfacia Molecules and Characterizing the Surface Roughness in Computer Simulations. Applications to the Liquid-Vapor Interface of Water (2008) J. Comput. Chem., 29, pp. 945-956 
504 |a Darvas, M., Jojják, K., Horvai, G., Jedlovszky, P., Molecular Dynamics Simulation and Identification of the Truly Interfacial Molecules (ITIM) Analysis of the Liquid-Vapor Interface of Dimethylsulfoxide (2010) J. Chem. Phys., 132, p. 134701 
504 |a Butler, J.A.V., The Thermodynamics of the Surfaces of Solutions (1932) Proc. R. Soc. London, Ser. A, 135, pp. 348-375 
504 |a Nath, S., Surface Tension of Nonideal Binary Liquid Mixtures as a Function of Composition (1999) J. Colloid Interface Sci., 209, pp. 116-122 
504 |a Jasper, J.J., The Surface Tension of Pure Liquid Compounds (2009) J. Phys. Chem. Ref. Data, 1, pp. 841-1010 
504 |a Paul, S., Chandra, A., Molecular Dynamics Study of th Liquid-Vapor Interface of Acetonitrile: Equilibrium and Dynamical Properties (2005) J. Phys. Chem. B, 109, pp. 20558-20564 
504 |a Hu, Z., Weeks, J.D., Acetonitrile on Silica Surfaces and at Its Liquid-Vapor Interface: Structural Correlations and Collective Dynamics (2010) J. Phys. Chem. C, 114, pp. 10202-10211 
504 |a Velarde, L., Zhang, X.-Y., Lu, Z., Joly, A.G., Wang, Z., Wang, H.-F., Communication: Spectroscopic Phase and Lineshapes in High-Resolution Broadband Sum Frequency Vibrational Spectroscopy: Resolving Interfacial Inhomogeneities of "identical" Molecular Groups (2011) J. Chem. Phys., 135, p. 241102 
504 |a Shen, J., He, Y., Wu, J., Gao, C., Zhang, X., Yang, Y., Ye, M., Ajayan, P.M., Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components (2015) Nano Lett., 15, pp. 5449-5454 
504 |a Owens, D.K., Some Thermodynamic Aspects of Polymer Adhesion (1970) J. Appl. Polym. Sci., 14, pp. 1725-1730 
504 |a Fowkes, F.M., Attractive Forces at Interfaces (1964) Ind. Eng. Chem., 56, pp. 40-52 
504 |a Meyer, M., Mareschal, M., Hayoun, M., A Comparison of the Structure and Dynamics of Liquid Water at Hydrophobic and Hydrophilic Surfaces - A Molecular Dyanmics Simulation Study (1988) J. Chem. Phys., 89, pp. 1067-1073 
504 |a Michael, D., Benjamin, I., Molecular Dynamics Simulation of the Water|Nitrobenzene Interface (1998) J. Electroanal. Chem., 450, pp. 335-345 
504 |a Benjamin, I., Theoretical Study of the Water/1,2-Dichloroethane Interface: Structure, Dynamics, and Conformational Equilibria at the Liquid-Liquid Interface (1992) J. Chem. Phys., 97, pp. 1432-1445 
504 |a Senapati, S., A Molecular Dyanamics Simulation Study of the Dimethyl Sulfoxide Liquid-Vapor Interface (2002) J. Chem. Phys., 117, pp. 1812-1816 
504 |a Liu, P., Harder, E., Berne, B.J., On the Calculation of Diffusion Coefficients in Confined Fluids and Interfaces with an Application to the Liquid-Vapor Interface of Water (2004) J. Phys. Chem. B, 108, pp. 6595-6602 
504 |a Pártay, L.B., Jedlovszky, P., Vincze, A., Horvai, G., Properties of Free Surface of Water-Methanol Mixtures. Analysis of the Truly Interfacial Molecular Layer in Computer Simulation (2008) J. Phys. Chem. B, 112, pp. 5428-5438 
504 |a Zwanzig, R., On the Relationa between Self-Diffusion and Viscosity of Liquids (1983) J. Chem. Phys., 79, pp. 4507-4508 
504 |a Saha, N., Das, B., Hazra, D.K., Viscosities and Excess Molar Volumes for Acetonitrile + Methanol at 298.15, 308.15, and 318.15 K (1995) J. Chem. Eng. Data, 40, pp. 1264-1266 
504 |a Blokkdal, E.H., (2014) Self-Diffusion Coefficient of Bulk Fluid Molecules Probed by Transverse Relaxation Measurements in An Inhomogeneous Magnetic Field, , Ms. Sci. Dissertation, University of Oslo, Norway 
504 |a Lu, R., Gan, W., Wu, B.-H., Zhang, Z., Guo, Y., Wang, H.-F., C-H Stretching Vibrations of Methyl, Methylene and Methine Groups at the Vapor/Alcohol (n = 1-8) Interfaces (2005) J. Phys. Chem. B, 109, pp. 14118-14129 
504 |a Joseph, J., Jemmis, E.D., Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation (2007) J. Am. Chem. Soc., 129, pp. 4620-4632 
504 |a Li, X., Liu, L., Schlegel, H.B., On the Physical Origin of Blue-Shifted Hydrogen Bonds (2002) J. Am. Chem. Soc., 124, pp. 9639-9647 
504 |a Roelfs, B., Schröter, C., Solomun, T.A., Comparison of Metal/Vaccum and Metal/Electrolyte Interfaces: The Au(100)/(Dimethylsulfoxide) and (Dimethylsulfoxide+Acetonitrile) Systems (1997) Ber. Bunsen-Ges. Phys. Chem., 101, pp. 1105-1112 
520 3 |a We present results from molecular dynamics simulations that examine microscopic characteristics of mixtures combining acetonitrile (ACN) and dimethyl sulfoxide (DMSO) at the vicinity of liquid/air and liquid/graphene interfaces. In the former interfaces, our simulations reveal a clear propensity of ACN to lie adjacent to the vapor phase at all concentrations. A simple model based on the consideration of a chemical equilibrium between bulk and surface states was found to be adequate to reproduce simulation results. Orientational correlations at the interface showed a mild tendency for dipolar aligments pointing toward the vapor phase in ACN-rich solutions; contrasting, in DMSO-rich mixtures, the preferential orientations looked mostly parallel to the interface. Close to graphene plates, the local scenarios reverse and local concentrations of DMSO are larger than the one observed in the bulk. Dynamical results reveal that the characteristic time scales describing orientational relaxations and residence times at the interfaces stretch as the concentration of ACN diminishes. For liquid/air interfaces residence times for ACN were found to be larger than those for DMSO. A classical treatment for the predictions of the C-H stretching band of the IR peaks in the bulk and at the interfaces reveals shifts that agree with experimental measurements. © 2017 American Chemical Society.  |l eng 
593 |a Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, Buenos Aires, 1429, Argentina 
593 |a ECyT, UNSAM, Martín de Irigoyen 3100, San Martín, Pcia. de Buenos Aires, 1650, Argentina 
593 |a Department of Physics, Technical University of Catalonia, Barcelona Tech. B5-209 UPC Northern Campus, Jordi Girona 1-3, Barcelona, Catalonia, 08034, Spain 
593 |a Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellón II, Buenos Aires, 1428, Argentina 
690 1 0 |a DIMETHYL SULFOXIDE 
690 1 0 |a MIXTURES 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a ORGANIC SOLVENTS 
690 1 0 |a CHEMICAL EQUILIBRIUMS 
690 1 0 |a DIMETHYL SULFOXIDE (DMSO) 
690 1 0 |a LIQUID/AIR INTERFACE 
690 1 0 |a MICROSCOPIC CHARACTERISTICS 
690 1 0 |a MOLECULAR DYNAMICS SIMULATIONS 
690 1 0 |a ORIENTATIONAL CORRELATIONS 
690 1 0 |a ORIENTATIONAL RELAXATION 
690 1 0 |a PREFERENTIAL ORIENTATION 
690 1 0 |a PHASE INTERFACES 
700 1 |a Elola, M.D. 
700 1 |a Martí, J. 
700 1 |a Laria, D. 
773 0 |d American Chemical Society, 2017  |g v. 121  |h pp. 14618-14627  |k n. 27  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85024923980&doi=10.1021%2facs.jpcc.7b03154&partnerID=40&md5=ade32961748585fd9b26235e2553ec5a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.jpcc.7b03154  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v121_n27_p14618_Rodriguez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v121_n27_p14618_Rodriguez  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v121_n27_p14618_Rodriguez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 78612