Robust inference for nonlinear regression models

A family of weighted estimators of the regression parameter under a nonlinear model is introduced. The proposed weighted estimators are computed through a four-step MM-procedure, and the given approach allows for possible missing responses. Under mild conditions, the proposed estimators turn to be c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bianco, A.M
Otros Autores: Spano, P.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer New York LLC 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02717caa a22003617a 4500
001 PAPER-17381
003 AR-BaUEN
005 20230518204835.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85037609342 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bianco, A.M. 
245 1 0 |a Robust inference for nonlinear regression models 
260 |b Springer New York LLC  |c 2017 
270 1 0 |m Bianco, A.M.; Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Pabellón 2, Argentina; email: anambianco@gmail.com 
506 |2 openaire  |e Política editorial 
520 3 |a A family of weighted estimators of the regression parameter under a nonlinear model is introduced. The proposed weighted estimators are computed through a four-step MM-procedure, and the given approach allows for possible missing responses. Under mild conditions, the proposed estimators turn to be consistent and asymptotically normal. A robust Wald-type test statistic based on this family of estimators is also provided, and its asymptotic distribution is derived under the null and contiguous hypotheses. The local robustness of the proposed procedures is studied via the influence function analysis, and the finite sample behaviour of the estimators and tests is investigated through a Monte Carlo study in different contaminated scenarios. An application to an environmental data set illustrates the procedure. © 2017 Sociedad de Estadística e Investigación Operativa  |l eng 
536 |a Article in Press 
593 |a Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina 
690 1 0 |a MISSING AT RANDOM 
690 1 0 |a MM-PROCEDURE 
690 1 0 |a NONLINEAR REGRESSION 
690 1 0 |a ROBUST ESTIMATION 
690 1 0 |a ROBUST HYPOTHESIS TESTING 
700 1 |a Spano, P.M. 
773 0 |d Springer New York LLC, 2017  |h pp. 1-30  |p Test  |x 11330686  |t Test 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037609342&doi=10.1007%2fs11749-017-0570-2&partnerID=40&md5=3644221b10bcc33550170e96e54cbd73  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11749-017-0570-2  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_11330686_v_n_p1_Bianco  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11330686_v_n_p1_Bianco  |y Registro en la Biblioteca Digital 
961 |a paper_11330686_v_n_p1_Bianco  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78334