Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach

Diesel fuel is one of the most important sources of hydrocarbon contamination worldwide. Its composition consists of a complex mixture of n-alkanes, branched alkanes and aromatic compounds. Hydrocarbon degradation in Pseudomonas species has been mostly studied under aerobic conditions; however, a dy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Tribelli, P.M
Otros Autores: Rossi, L., Ricardi, M.M, Gomez-Lozano, M., Molin, S., Raiger Iustman, L.J, Lopez, N.I
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17176caa a22014777a 4500
001 PAPER-17232
003 AR-BaUEN
005 20230518204824.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85033403418 
024 7 |2 cas  |a alcohol dehydrogenase, 9031-72-5; aldehyde dehydrogenase, 37353-37-0, 9028-86-8; alkane 1 monooxygenase, 9059-16-9; diesel fuel, 68334-30-5; oxidoreductase, 9035-73-8, 9035-82-9, 9037-80-3, 9055-15-6; oxygen, 7782-44-7; RNA, 63231-63-0 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JIMBF 
100 1 |a Tribelli, P.M. 
245 1 0 |a Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach 
260 |b Springer Verlag  |c 2018 
270 1 0 |m Raiger Iustman, L.J.; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes, 2160, Argentina; email: lri@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alonso, H., Kleifeld, O., Yeheskel, A., Ong, P.C., Liu, Y.C., Stok, J.E., De Voss, J.J., Roujeinikova, A., Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB (2014) Biochem J, 460, pp. 283-293. , COI: 1:CAS:528:DC%2BC2cXnvFemtLs%3D, PID: 24646189 
504 |a Alvarez-Ortega, C., Harwood, C.S., Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration (2007) Mol Microbiol, 65, pp. 153-165. , COI: 1:CAS:528:DC%2BD2sXnslyjt7o%3D, PID: 17581126 
504 |a Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66. , COI: 1:CAS:528:DC%2BD1cXhsFCgsL7N, PID: 18931822 
504 |a Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Zagnitko, O., The RAST server: rapid annotations using subsystems technology (2008) BMC Genom, 9, p. 75 
504 |a van Beilen, J.B., Funhoff, E.G., Alkane hydroxylases involved in microbial alkane degradation (2007) Appl Microbiol Biotechnol, 74, pp. 13-21. , COI: 1:CAS:528:DC%2BD2sXhtVansLg%3D, PID: 17216462 
504 |a van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., Röthlisberger, M., Witholt, B., Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes (2001) Microbiology, 147, pp. 1621-1630. , PID: 11390693 
504 |a Berthe-Corti, L., Fetzner, S., Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions (2002) Acta Biotechnol, 22, pp. 299-336. , COI: 1:CAS:528:DC%2BD38XmsVagt7s%3D 
504 |a Callaghan, A.V., Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins (2013) Front Microbiol, 4, p. 89. , PID: 23717304 
504 |a Chayabutra, C., Ju, L.K., Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions (2000) Appl Environ Microbiol, 66, pp. 493-498. , COI: 1:CAS:528:DC%2BD3cXhtFerurw%3D, PID: 10653709 
504 |a Conesa, A., Götz, S., Blast2GO: a comprehensive suite for functional analysis in plant genomics (2008) Int J Plant Genom 
504 |a Dinamarca, M.A., Aranda-Olmedo, I., Puyet, A., Rojo, F., Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures (2003) J Bacteriol, 185, pp. 4772-4778. , COI: 1:CAS:528:DC%2BD3sXmt1GjsLY%3D, PID: 12896996 
504 |a Eschbach, M., Schreiber, K., Trunk, K., Buer, J., Jahn, D., Schobert, M., Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation (2004) J Bacteriol, 186, pp. 4596-4604. , COI: 1:CAS:528:DC%2BD2cXmtVems7g%3D, PID: 15231792 
504 |a Fisher, R., (1934) Statistical methods for research workers, , Oliver and Boyd, Edinburgh 
504 |a Fonseca, P., Moreno, R., Rojo, F., Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses (2011) Environ Microbiol Rep, 3, pp. 329-339. , COI: 1:CAS:528:DC%2BC3MXntlKmsbs%3D, PID: 23761279 
504 |a Gómez-Lozano, M., Marvig, R.L., Molin, S., Long, K.S., Genome-wide identification of novel small RNAs in Pseudomonas aeruginosa (2012) Environ Microbiol, 14, pp. 2006-2016. , PID: 22533370 
504 |a Gunasekera, T.S., Striebich, R.C., Mueller, S.S., Strobel, E.M., Ruiz, O.N., Transcriptional profiling suggests that multiple metabolic adaptations are required for effective proliferation of Pseudomonas aeruginosa in jet fuel (2013) Environ Sci Technol, 47, pp. 13449-13458. , COI: 1:CAS:528:DC%2BC3sXhs1ygs7bI, PID: 24164330 
504 |a Hernández-Arranz, S., Moreno, R., Rojo, F., The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy (2013) Environ Microbiol, 15, pp. 227-241. , PID: 22925411 
504 |a Kok, M., Oldenhuis, R., Van Der Linden, M.P.G., Raatjes, P., Kingma, J., Van Lelyveld, P.H., Witholt, B., The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression (1989) J Biol Chem, 264, pp. 5435-5441. , COI: 1:CAS:528:DyaL1MXlsVOmtLg%3D, PID: 2647718 
504 |a Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., Witholt, B., Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates (1988) Appl Environ Microbiol, 54, pp. 2924-2932. , COI: 1:CAS:528:DyaL1MXptFOqtQ%3D%3D, PID: 16347790 
504 |a Larionov, A., Krause, A., Miller, W., A standard curve based method for relative real time PCR data processing (2005) BMC Bioinform, 6, p. 62 
504 |a Liu, H., Liang, R., Tao, F., Ma, C., Liu, Y., Liu, X., Liu, J., Genome sequence of Pseudomonas aeruginosa strain SJTD-1, a bacterium capable of degrading long-chain alkanes and crude oil (2012) J Bacteriol, 194, pp. 4783-4784. , COI: 1:CAS:528:DC%2BC38Xht1GhsbzP, PID: 22887679 
504 |a Liu, H., Sun, W.-B., Liang, R.-B., Huang, L., Hou, J.-L., Liu, J.-H., iTRAQ-based quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1: a global response to n-octadecane induced stress (2015) J Proteom, 123, pp. 14-28. , COI: 1:CAS:528:DC%2BC2MXmsVerurk%3D 
504 |a López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Põtter, M., Steinbüchel, A., Méndez, B.S., Pseudomonas extremaustralis sp. nov., a poly(3-hydroxybutyrate) producer isolated from an antarctic environment (2009) Curr Microbiol, 59, pp. 514-519. , PID: 19688380 
504 |a Mann, H.B., Whitney, D.R., On a test of whether one of two random variables is stochastically larger than the other (1947) Ann Math Stat, 18 (1), pp. 50-60 
504 |a Martínez-Antonio, A., Collado-Vides, J., Identifying global regulators in transcriptional regulatory networks in bacteria (2003) Curr Opin Microbiol, 6, pp. 482-489. , PID: 14572541 
504 |a Mason, O.U., Hazen, T.C., Borglin, S., Chain, P.S., Dubinsky, E.A., Fortney, J.L., Han, J., Jansson, J.K., Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to deepwater horizon oil spill (2012) ISME J, 6, pp. 1715-1727. , COI: 1:CAS:528:DC%2BC38Xht1GjtLbL, PID: 22717885 
504 |a McClure, R., Balasubramanian, D., Sun, Y., Bobrovskyy, M., Sumby, P., Genco, C.A., Vanderpool, C.K., Tjaden, B., Computational analysis of bacterial RNA-Seq data (2013) Nucleic Acids Res, 41. , COI: 1:CAS:528:DC%2BC3sXht1CktLnK, PID: 23716638 
504 |a Münch, R., Hiller, K., Grote, A., Scheer, M., Klein, J., Schobert, M., Jahn, D., Virtual footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes (2005) Bioinformatics, 21, pp. 4187-4189. , PID: 16109747 
504 |a Rodriguez, L.M., Overholt, W.A., Hagan, C., Huettel, M., Kostka, J.E., Konstantinidis, K.T., Microbial community successional patterns in beach sands impacted by the deepwater horizon oil spill (2015) ISME J, 9, pp. 1928-1940. , PID: 25689026 
504 |a Rojo, F., Specificity at the end of the tunnel: understanding substrate length discrimination by the AlkB Alkane hydroxylase (2005) J Bacteriol, 187, pp. 19-22. , COI: 1:CAS:528:DC%2BD2MXmsFWl, PID: 15601683 
504 |a Rojo, F., Degradation of alkanes by bacteria: minireview (2009) Environ Microbiol, 11, pp. 2477-2490. , COI: 1:CAS:528:DC%2BD1MXhtlKisLzP, PID: 19807712 
504 |a Sawers, R.G., Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli (1991) Mol Microbiol, 5, pp. 1469-1481. , COI: 1:CAS:528:DyaK38XkvVCgtr4%3D, PID: 1787797 
504 |a Schirmer, A., Rude, M.A., Li, X., Popova, E., Del Cardayre, S.B., Microbial biosynthesis of alkanes (2010) Science, 329, pp. 559-562. , COI: 1:CAS:528:DC%2BC3cXptlCltLc%3D, PID: 20671186 
504 |a Smits, T.H.M., Witholt, B., van Beilen, J.B., Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa (2003) Antonie Van Leeuwenhoek, 84, pp. 193-200. , COI: 1:CAS:528:DC%2BD3sXnslarurw%3D, PID: 14574114 
504 |a Tribelli, P.M., Hay, A.G., López, N.I., The global anaerobic regulator Anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis (2013) PLoS One, 8. , COI: 1:CAS:528:DC%2BC3sXhs1OisLvI, PID: 24146909 
504 |a Tribelli, P.M., Di Martino, C., López, N.I., Raiger Iustman, L.J., Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis (2012) Biodegradation, 23, pp. 645-651. , COI: 1:CAS:528:DC%2BC38XhtFGlt77F, PID: 22302594 
504 |a Tribelli, P.M., Méndez, B.S., López, N.I., Oxygen-sensitive global regulator, anr, is involved in the biosynthesis of poly(3-Hydroxybutyrate) in Pseudomonas extremaustralis (2010) J Mol Microbiol Biotechnol, 19, pp. 180-188. , COI: 1:CAS:528:DC%2BC3MXmsVGltQ%3D%3D, PID: 21042031 
504 |a Tribelli, P.M., Nikel, P.I., Oppezzo, O.J., López, N.I., Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis (2013) Microbiology, 159, pp. 259-268. , COI: 1:CAS:528:DC%2BC3sXjvFOhtbw%3D, PID: 23223440 
504 |a Tribelli, P.M., Venero, E.C.S., Ricardi, M.M., Gómez-Lozano, M., Raiger Iustman, L.J., Molin, S., López, N.I., Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium Pseudomonas extremaustralis (2015) PLoS One, 10. , PID: 26671564 
504 |a Trunk, K., Benkert, B., Quäck, N., Münch, R., Scheer, M., Garbe, J., Jänsch, L., Jahn, D., Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons (2010) Environ Microbiol, 12, pp. 1719-1733. , COI: 1:CAS:528:DC%2BC3cXptFOgs7s%3D, PID: 20553552 
504 |a Ugidos, A., Morales, G., Rial, E., Williams, H.D., Rojo, F., The coordinate regulation of multiple terminal oxidases by the Pseudomonas putida ANR global regulator (2008) Environ Microbiol, 10, pp. 1690-1702. , COI: 1:CAS:528:DC%2BD1cXptVKgsb8%3D, PID: 18341582 
504 |a Wentzel, A., Ellingsen, T.E., Kotlar, H.K., Zotchev, S.B., Throne-Holst, M., Bacterial metabolism of long-chain n-alkanes (2007) Appl Microbiol Biotechnol, 76, pp. 1209-1221. , COI: 1:CAS:528:DC%2BD2sXhtVGmt7%2FN, PID: 17673997 
504 |a Yamada, T., Letunic, I., Okuda, S., Kanehisa, M., Bork, P., IPath2.0: interactive pathway explorer (2011) Nucleic Acids Res, 39, pp. W412-W415. , COI: 1:CAS:528:DC%2BC3MXosVOntLY%3D, PID: 21546551 
520 3 |a Diesel fuel is one of the most important sources of hydrocarbon contamination worldwide. Its composition consists of a complex mixture of n-alkanes, branched alkanes and aromatic compounds. Hydrocarbon degradation in Pseudomonas species has been mostly studied under aerobic conditions; however, a dynamic spectrum of oxygen availability can be found in the environment. Pseudomonas extremaustralis, an Antarctic bacterium isolated from a pristine environment, is able to degrade diesel fuel and presents a wide microaerophilic metabolism. In this work RNA-deep sequence experiments were analyzed comparing the expression profile in aerobic and microaerophilic cultures. Interestingly, genes involved in alkane degradation, including alkB, were over-expressed in micro-aerobiosis in absence of hydrocarbon compounds. In minimal media supplemented with diesel fuel, n-alkanes degradation (C13–C19) after 7 days was observed under low oxygen conditions but not in aerobiosis. In-silico analysis of the alkB promoter zone showed a putative binding sequence for the anaerobic global regulator, Anr. Our results indicate that some diesel fuel components can be utilized as sole carbon source under microaerophilic conditions for cell maintenance or slow growth in a Pseudomonas species and this metabolism could represent an adaptive advantage in polluted environments. © 2017, Society for Industrial Microbiology and Biotechnology.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: EMBO 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Acknowledgements This work was partially supported by grants from UBA, CONICET, and ANPCyT. PMT, MMR, LJRI and NIL are career investigators from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina). RNA-seq experiments were performed by PMT at Dr. Molin’s Lab supported by a short term EMBO fellowship. Authors want to thank to anonymous reviewers for the helpful criticisms. 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes, 2160, Buenos Aires, C1428EGA, Argentina 
593 |a IQUIBICEN, CONICET, Buenos Aires, Argentina 
593 |a Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina 
593 |a Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark 
690 1 0 |a ALKANE DEGRADATION 
690 1 0 |a ALKB 
690 1 0 |a MICRO-AEROBIOSIS 
690 1 0 |a PSEUDOMONAS EXTREMAUSTRALIS 
690 1 0 |a RNA-SEQ 
690 1 0 |a ALCOHOL DEHYDROGENASE 
690 1 0 |a ALDEHYDE DEHYDROGENASE 
690 1 0 |a ALKANE 
690 1 0 |a ALKANE 1 MONOOXYGENASE 
690 1 0 |a DIESEL FUEL 
690 1 0 |a HYDROCARBON 
690 1 0 |a OXIDOREDUCTASE 
690 1 0 |a OXYGEN 
690 1 0 |a RNA 
690 1 0 |a RUBREDOXIN 
690 1 0 |a RUBREDOXINE REDUCTASE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a AEROBIC METABOLISM 
690 1 0 |a AMINO ACID METABOLISM 
690 1 0 |a ARGC GENE 
690 1 0 |a ARTICLE 
690 1 0 |a AZU GENE 
690 1 0 |a BACTERIAL COUNT 
690 1 0 |a CARBON SOURCE 
690 1 0 |a CELL VIABILITY 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DEGRADATION 
690 1 0 |a DENITRIFICATION 
690 1 0 |a DOWN REGULATION 
690 1 0 |a FLGA GENE 
690 1 0 |a GENE 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENETIC ORGANIZATION 
690 1 0 |a NONHUMAN 
690 1 0 |a PROMOTER REGION 
690 1 0 |a PSEUDOMONAS 
690 1 0 |a PSEUDOMONAS EXTREMAUSTRALIS 
690 1 0 |a REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION 
690 1 0 |a RNA SEQUENCE 
690 1 0 |a TRANSCRIPTOMICS 
690 1 0 |a UPREGULATION 
700 1 |a Rossi, L. 
700 1 |a Ricardi, M.M. 
700 1 |a Gomez-Lozano, M. 
700 1 |a Molin, S. 
700 1 |a Raiger Iustman, L.J. 
700 1 |a Lopez, N.I. 
773 0 |d Springer Verlag, 2018  |g v. 45  |h pp. 15-23  |k n. 1  |p J. Ind. Microbiol. Biotechnol.  |x 13675435  |t Journal of Industrial Microbiology and Biotechnology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033403418&doi=10.1007%2fs10295-017-1987-z&partnerID=40&md5=9925da9a7de0390dd9fd41a23523e412  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10295-017-1987-z  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13675435_v45_n1_p15_Tribelli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13675435_v45_n1_p15_Tribelli  |y Registro en la Biblioteca Digital 
961 |a paper_13675435_v45_n1_p15_Tribelli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78185