Determination of the bottom deformation from space- and time-resolved water wave measurements

In this paper we study both theoretically and experimentally the inverse problem of indirectly measuring the shape of a localized bottom deformation with a non-instantaneous time evolution, from either an instantaneous global state (space-based inversion) or a local time-history record (time-based i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cobelli, Pablo Javier
Otros Autores: Petitjeans, P., Maurel, A., Pagneux, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Cambridge University Press 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11594caa a22011297a 4500
001 PAPER-17183
003 AR-BaUEN
005 20241217090012.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85038428231 
030 |a JFLSA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cobelli, Pablo Javier 
245 1 0 |a Determination of the bottom deformation from space- and time-resolved water wave measurements 
260 |b Cambridge University Press  |c 2018 
270 1 0 |m Cobelli, P.J.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Argentina; email: cobelli@df.uba.ar 
504 |a Abramowitz, M., Stegun, I.A., (1964) Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, , Dover 
504 |a Arfken, G., (1985) Inverse Laplace Transformation, Mathematical Methods for Physicists, , Academic Press 
504 |a Braddock, R.D., Van Den Driessche, P., Peady, G.W., Tsunami generation (1973) J. Fluid Mech., 59, pp. 817-828 
504 |a Calvetti, D., Morigi, S., Reichel, L., Sgallari, F., Tikhonov regularization and the L-curve for large discrete ill-posed problems (2000) J. Comput. Appl. Maths, 123 (1-2), pp. 423-446 
504 |a Cobelli, P.J., Maurel, A., Pagneux, V., Petitjeans, P., Global measurement of water waves by Fourier transform profilometry (2009) Exp. Fluids, 46, pp. 1037-1047 
504 |a Cobelli, P.J., Pagneux, V., Maurel, A., Petitjeans, P., Experimental observation of trapped modes in a water wave channel (2009) Europhys. Lett., 88, p. 20006 
504 |a Cobelli, P.J., Pagneux, V., Maurel, A., Petitjeans, P., Experimental study on waterwave trapped modes (2011) J. Fluid Mech., 666, pp. 445-476 
504 |a Cobelli, P., Przadka, A., Petitjeans, P., Lagubeau, G., Pagneux, V., Maurel, A., Different regimes for water wave turbulence (2011) Phys. Rev. Lett., 107, p. 214503 
504 |a Conway, J.B., A course in operator theory (1999) American Mathematical Society 
504 |a Dutykh, D., Dias, F., Water waves generated by a moving bottom (2007) Tsunami and Nonlinear Waves, pp. 65-95. , (ed. A. Kundu), Springer 
504 |a Eldén, L., Algorithms for the regularization of ill-conditioned least squares problems (1977) BIT Numer. Maths, 17 (2), pp. 134-145 
504 |a Engl, H.W., Hanke, M., Neubauer, A., (2000) Regularization of Inverse Problems, Mathematics and Its Applications, , Springer 
504 |a Golub, G.H., Heath, M., Wahba, G., Generalized cross-validation as a method for choosing a good ridge parameter (1979) Technometrics, 21 (2), pp. 215-223 
504 |a Groetsch, C.W., The theory of tikhonov regularization for fredholm equations of the first kind (1984) Pitman Adv. Publ. Program. Research Notes in Mathematics Series. Pitman 
504 |a Hadamard, J., (2003) Lectures On Cauchy's Problem in Linear Partial Differential Equations, , Dover Phoenix Editions. Dover 
504 |a Hammack, J.L., A note on tsunamis: Their generation and propagation in an ocean of uniform depth (1973) J. Fluid Mech., 60, pp. 769-799 
504 |a Hansen, P.C., Analysis of discrete ill-posed problems by means of the L-curve (1992) SIAM Rev., 34 (4), pp. 561-580 
504 |a Hansen, P.C., Discrete inverse problems: Insight and algorithms, fundamentals of algorithms (2010) Society for Industrial and Applied Mathematics 
504 |a Hansen, P.C., Jensen, T.K., Rodriguez, G., An adaptive pruning algorithm for the discrete L-curve criterion (2007) J. Comput. Appl. Maths, 198 (2), pp. 483-492 
504 |a Hansen, P.C., O'leary, D.P., The use of the L-curve in the regularization of discrete ill-posed problems (1993) SIAM J. Sci. Comput., 14, pp. 1487-1503 
504 |a Jang, T.S., A method for simultaneous identification of the full nonlinear damping and the phase shift and amplitude of the external harmonic excitation in a forced nonlinear oscillator (2013) Comput. Struct., 120, pp. 77-85 
504 |a Jang, T.S., Han, S.L., Application of Tikhonov's regularization to unstable water waves of the two-dimensional fluid flow: Spectrum with compact support (2008) Ships Offshore Struct., 3 (1), pp. 41-47 
504 |a Jang, T.S., Han, S.L., Kinoshita, T., An inverse measurement of the sudden underwater movement of the sea-floor by using the time-history record of the water-wave elevation (2010) Wave Motion, 47, pp. 146-155 
504 |a Jang, T.S., Sung, H.G., Park, J., A determination of an abrupt motion of the sea bottom by using snapshot data of water waves (2012) Math. Prob. Engng, 2012 (4), pp. 472-575 
504 |a Kajiura, K., The leading wave of tsunami (1963) Bull. Earthq. Res. Inst., 41, pp. 535-571 
504 |a Keller, J.B., Tsunamis: Water waves produced by earthquakes (1961) Proceedings of Tsunami Hydrodynamics Conference, 24, pp. 154-166. , Institute of Geophysics, University of Hawaii 
504 |a Kirsch, A., (2011) An Introduction to the Mathematical Theory of Inverse Problems, Applied Mathematical Sciences, , Springer 
504 |a Lagubeau, G., Fontelos, M.A., Josserand, C., Maurel, A., Pagneux, V., Petitjeans, P., Flower patterns in drop impact on thin liquid films (2010) Phys. Rev. Lett., 105 (18), p. 184503 
504 |a Lamb, H., (1932) Hydrodynamics, , 6th edn. Cambridge University Press 
504 |a Lawson, C.L., Hanson, R.J., Solving linear least squares problems (1995) Society for Industrial and Applied Mathematics 
504 |a Goff, A.L.E., Cobelli, P., Lagubeau, G., Supershear Rayleigh waves at a soft interface (2013) Phys. Rev. Lett., 110, p. 236101 
504 |a Maurel, A., Cobelli, P.J., Pagneux, V., Petitjeans, P., Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry (2009) Appl. Opt., 48 (2), pp. 380-392 
504 |a Mei, C.C., Stiassnie, M., Yue, D.K.P., Theory and applications of ocean surface waves: Linear aspects, advanced series on ocean engineering (2005) World Scientific 
504 |a Murty, T.S., Aswathanarayana, U., Nirupama, N., (2007) The Indian Ocean Tsunami, , Taylor & Francis 
504 |a Przadka, A., Cabane, B., Pagneux, V., Maurel, A., Petitjeans, P., Fourier transform profilometry for water waves: How to achieve clean water attenuation with diffusive reflection at the water surface? (2012) Exp. Fluids, 52 (2), pp. 519-527 
504 |a Shannon, C.E., Communication in the presence of noise (1949) Proc. IRE, 37 (1), pp. 10-21 
504 |a Sneddon, I.N., (1951) Fourier Transforms, International Series in Pure and Applied Mathematics, , McGraw-Hill 
504 |a Taubin, G., Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations, with applications to edge and range image segmentation (1991) IEEE Trans. Pattern Anal. Mach. Intell., 13, pp. 1115-1138 
504 |a Tikhonov, A.N., On the stability of inverse problems (1943) Dokl. Akad. Nauk SSSR, 35, pp. 195-198 
504 |a Tikhonov, A.N., Solution of incorrectly formulated problems and the regularization method (1963) Sov. Maths, 4, pp. 1035-1038 
504 |a Tikhonov, A.N., Arsenin, V.I.A., (1977) Solutions of Ill-Posed Problems, Scripta Series in Mathematics, , Winston 
504 |a Tricomi, F.G., (1985) Integral Equations, Pure and Applied Mathematics, 5. , Dover 
504 |a Vaughn, M.T., (2007) Introduction to Mathematical Physics, Physics Textbook, , Wiley 
504 |a Wazwaz, A.M., (2011) Linear and Nonlinear Integral Equations: Methods and Applications, , Higher Education Press 
504 |a Yosida, K., (1995) Functional Analysis, Classics in Mathematics, , Cambridge University Press 
506 |2 openaire  |e Política editorial 
520 3 |a In this paper we study both theoretically and experimentally the inverse problem of indirectly measuring the shape of a localized bottom deformation with a non-instantaneous time evolution, from either an instantaneous global state (space-based inversion) or a local time-history record (time-based inversion) of the free-surface evolution. Firstly, the mathematical inversion problem is explicitly defined and uniqueness of its solution is established. We then show that this problem is ill-posed in the sense of Hadamard, rendering its solution unstable. In order to overcome this difficulty, we introduce a regularization scheme as well as a strategy for choosing the optimal value of the associated regularization parameter. We then conduct a series of laboratory experiments in which an axisymmetric three-dimensional bottom deformation of controlled shape and time evolution is imposed on a layer of water of constant depth, initially at rest. The detailed evolution of the air-liquid interface is measured by means of a free-surface profilometry technique providing space- and time-resolved data. Based on these experimental data and employing our regularization scheme, we are able to show that it is indeed possible to reconstruct the seabed profile responsible for the linear free-surface dynamics either by space- or time-based inversions. Furthermore, we discuss the different relative advantages of each type of reconstruction, their associated errors and the limitations of the inverse determination. © 2017 Cambridge University Press.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
593 |a Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR CNRS 7636, Ecole Supérieure de Physique et de Chimie Industrielles, ESPCI-ParisTech, 10 rue Vauquelin, Paris Cedex 5, 75231, France 
593 |a Institut Langevin, UMR CNRS 7587, Paris, France 
593 |a Laboratoire D'Acoustique de L'Université du Maine, UMR CNRS 6613, Avenue Olivier Messiaen, Le Mans Cedex 9, 72085, France 
690 1 0 |a SURFACE GRAVITY WAVES 
690 1 0 |a WAVES/FREE-SURFACE FLOWS 
690 1 0 |a DEFORMATION 
690 1 0 |a GRAVITY WAVES 
690 1 0 |a PHASE INTERFACES 
690 1 0 |a WATER WAVES 
690 1 0 |a AIR LIQUID INTERFACES 
690 1 0 |a FREE-SURFACE DYNAMICS 
690 1 0 |a LABORATORY EXPERIMENTS 
690 1 0 |a REGULARIZATION PARAMETERS 
690 1 0 |a REGULARIZATION SCHEMES 
690 1 0 |a SURFACE GRAVITY WAVES 
690 1 0 |a WATER WAVE MEASUREMENTS 
690 1 0 |a WAVES/FREE-SURFACE FLOWS 
690 1 0 |a INVERSE PROBLEMS 
690 1 0 |a FREE SURFACE FLOW 
690 1 0 |a GRAVITY WAVE 
690 1 0 |a INVERSE PROBLEM 
690 1 0 |a SURFACE ENERGY 
690 1 0 |a WATER WAVE 
700 1 |a Petitjeans, P. 
700 1 |a Maurel, A. 
700 1 |a Pagneux, V. 
773 0 |d Cambridge University Press, 2018  |g v. 835  |h pp. 301-326  |p J. Fluid Mech.  |x 00221120  |t Journal of Fluid Mechanics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038428231&doi=10.1017%2fjfm.2017.741&partnerID=40&md5=8ddea4b92442deddfda2b0bfd27d60f8  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1017/jfm.2017.741  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00221120_v835_n_p301_Cobelli  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221120_v835_n_p301_Cobelli  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_00221120_v835_n_p301_Cobelli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion