Effect of tamoxifen on the sphingolipid biosynthetic pathway in the different intraerythrocytic stages of the apicomplexa Plasmodium falciparum

Parasites of the genus Plasmodium responsible for Malaria are obligate intracellular pathogens residing in mammalian red blood cells, hepatocytes, or mosquito midgut epithelial cells. Regarding that detailed knowledge on the sphingolipid biosynthetic pathway of the apicomplexan protozoan parasites i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Piñero, T.A
Otros Autores: Landoni, M., Duschak, V.G, Katzin, A.M, Couto, A.S
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15797caa a22016337a 4500
001 PAPER-17062
003 AR-BaUEN
005 20230518204811.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85042561524 
024 7 |2 cas  |a ceramide glucosyltransferase, 37237-44-8; sphingomyelin, 85187-10-6; tamoxifen, 10540-29-1; Glycosphingolipids; inositolphosphoceramides; Phosphatidylinositols; Sphingolipids; Tamoxifen 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BBRCA 
100 1 |a Piñero, T.A. 
245 1 0 |a Effect of tamoxifen on the sphingolipid biosynthetic pathway in the different intraerythrocytic stages of the apicomplexa Plasmodium falciparum 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Couto, A.S.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Química Orgánica - CONICET, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Intendente Güiraldes 2160, C1428GA, Ciudad UniversitariaArgentina; email: acouto@qo.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a World malaria report, (2015), World Health Organization Geneva Available from:; Schwartz, L., Brown, G.V., Genton, B., Moorthy, V.S., A review of malaria vaccine clinical projects based on the WHO rainbow table (2012) Malar. J., 11, pp. 11-33 
504 |a Young, S.A., Mina, J.G., Denny, P.W., Smith, T.K., Sphingolipid and ceramide homeostasis: potential therapeutic targets (2012) Biochem. Res. Intern., 2012, p. 248135 
504 |a Hannun, Y.A., Obeid, L.M., Principles of bioactive lipid signalling: lessons from sphingolipids (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 139-150 
504 |a Wang, G., Silva, J., Krishnamurthy, K., Tran, E., Condie, B.G., Bieberich, E., Direct binding to ceramide activates protein kinase C before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells (2005) J. Biol. Chem., 280, pp. 26415-26424 
504 |a Huwiler, A., Brunner, J., Hummel, R., Vervoordeldonk, M., Stabel, S., van den Bosch, H., Pfeilschifter, J., Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 6959-6963 
504 |a Lee, J.Y., Hannun, Y.A., Obeid, L.M., Ceramide inactivates cellular protein kinase Calpha (1996) J. Biol. Chem., 271, pp. 13169-13174 
504 |a van Doorn, R., Nijland, P.G., Dekker, N., Witte, M.E., Lopes-Pinheiro, M.A., van het Hof, B., Kooij, G., de Vries, H.E., Fingolimod attenuates ceramide-induced blood-brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes (2012) Acta Neuropathol., 124, pp. 397-410 
504 |a Lang, P.A., Schenck, M., Nicolay, J.P., Becker, J.U., Kempe, D.S., Lupescu, A., Koka, S., Lang, F., Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide (2007) Nat. Med., 13, pp. 164-170 
504 |a Panchal, M., Gaudin, M., Lazar, A.N., Salvati, E., Rivals, I., Ayciriex, S., Dauphinot, L., Duyckaerts, C., Ceramides and sphingomyelinases in senile plaques (2014) Neurobiol. Dis., 65, pp. 193-201 
504 |a Wiegmann, K., Schütze, S., Machleidt, T., Witte, D., Krönke, M., Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling (1994) Cell, 78, pp. 1005-1015 
504 |a Sanvicens, N., Cotter, T.G., Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells (2006) J. Neurochem., 98, pp. 1432-1444 
504 |a Azzouz, N., Rauscher, B., Gerold, P., Cesbron-Delauw, M.F., Dubremetz, J.F., Schwarz, R.T., Evidence for de novo sphingolipid biosynthesis in Toxoplasma gondii (2002) Int. J. Parasitol., 32, pp. 677-684 
504 |a Gerold, P., Schwarz, R.T., Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum (2001) Mol. Biochem.Parasitol., 112, pp. 29-37 
504 |a Ansorge, I., Jeckel, D., Wieland, F., Lingelbach, K., Plasmodium falciparum-infected erythrocytes utilize a synthetic truncated ceramide precursor for synthesis and secretion of truncated sphingomyelin (1995) Biochem. J., 308, pp. 335-341 
504 |a Elmendorf, H.G., Haldar, K., Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes (1994) J. Cell Biol., 124, pp. 449-462 
504 |a Haldar, K., Uyetake, L., Ghori, N., Elmendorf, H.G., Li, W.L., The accumulation and metabolism of a fluorescent ceramide derivative in Plasmodium falciparum-infected erythrocytes (1991) Mol. Biochem. Parasitol., 49, pp. 143-156 
504 |a Welti, R., Mui, E., Sparks, A., Wernimont, S., Isaac, G., Kirisits, M., Lipidomic analysis of Toxoplasma gondii reveals unusual polar lipids (2007) Biochemistry, 46, pp. 13882-13890 
504 |a Couto, A.S., Caffaro, C., Uhrig, M.L., Kimura, E., Peres, V.J., Katzin, A.M., Nishioka, M., Erra-Balsells, R., Glycosphingolipids in Plasmodium falciparum. Presence of an active glucosylceramide synthase (2004) Eur. J. Biochem., 271, pp. 2204-2214 
504 |a Galati, S., Ekland, E.H., Ruggles, K.V., Chan, R.B., Jayabalasingham, B., Zhou, B., Mantel, P.Y., Fidock, D.A., Profiling the essential nature of lipid metabolism in asexual blood and gametocyte stages of Plasmodium falciparum (2015) Cell Host Microbe, 18 (3), pp. 371-381 
504 |a Heung, L.J., Luberto, C., Del Poeta, M., Role of sphingolipids in microbial pathogenesis (2006) Infect. Immun., 74, pp. 28-39 
504 |a Taha, T.A., Mullen, T.D., Obeid, L.M., A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death (2006) Biochim. Biophys. Acta, 1758, pp. 2027-2036 
504 |a Spiegel, S., Milstien, S., Sphingosine 1-phosphate, a key cell signaling molecule (2002) J. Biol. Chem., 277, pp. 25851-25854 
504 |a Kolter, T., Proia, R.L., Sandhoff, K., Combinatorial ganglioside biosynthesis (2002) J. Biol. Chem., 277, pp. 25859-25862 
504 |a Kolesnick, R., Altieri, D., Fuks, Z., A CERTain role for ceramide in taxane-induced cell death (2007) Canc. Cell, 11, pp. 473-475 
504 |a Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., Fuks, Z., Kolesnick, R., Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals (1995) Cell, 82, pp. 405-414 
504 |a Rathore, S., Jain, S., Sinha, D., Gupta, M., Asad, M., Srivastava, A., Narayanan, M.S., Mohmmed, A., Disruption of a mitochondrial protease machinery in Plasmodium falciparum is an intrinsic signal for parasite cell death (2011) Cell Death Dis., 2. , e231 
504 |a Kreidenweiss, A., Kremsner, P.G., Mordmuller, B., Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon (2008) Malar. J., 7, pp. 187-195 
504 |a Pradel, G., Schlitzer, M., Antibiotics in malaria therapy and their effect on the parasite apicoplast (2010) Curr. Mol. Med., 10, pp. 335-349 
504 |a Trager, W., Jensen, J.B., Human malaria parasites in continuous culture (1976) Science, 193, pp. 673-675 
504 |a Kimura, E.A., Couto, A.S., Peres, V.J., Casal, O.L., Katzin, A.M., N-linked glycoproteins are related to schizogony of the intraerythrocytic stages in Plasmodium falciparum (1996) J. Biol. Chem., 271, pp. 14452-14461 
504 |a Braun-Breton, C., Jendoubi, M., Brunet, E., Perrin, L., Scaife, J., Pereira da Silva, L., In vivo time course of synthesis and processing of major schizont membrane polypeptides in Plasmodium falciparum (1986) Mol. Biochem. Parasitol., 20, pp. 33-43 
504 |a Lambros, C., Vanderberg, J.P., Synchronization of erythrocytic stages in culture (1979) J. Parasitol., 65, pp. 418-420 
504 |a Miguel, D.C., Yokoyama-Yasunaka, J.K., Andreoli, W.K., Mortara, R.A., Uliana, S.R., Tamoxifen is effective against Leishmania and induces a rapid alkalinization of parasitophorous vacuoles harbouring L. (Leishmania) amazonensis amastigotes (2007) J. Antimicrob. Chemother., 60, pp. 526-534 
504 |a Landoni, M., Duschak, V.G., Peres, V.J., Casal, O.L., Katzin, A.M., Plasmodium falciparum biosynthesizes sulfoglycosphingolipids (2007) Mol. Biochem. Parasitol., 154, pp. 22-29 
504 |a Ben Mamoun, C., Prigge, S.T., Vial, H., Targeting the lipid metabolic pathways for the treatment of malaria (2010) Drug Dev. Res., 71 (1), pp. 44-55 
504 |a Lauer, S.A., Ghori, N., Haldar, K., Sphingolipid synthesis as a target for chemotherapy against malaria parasites (1995) Proc. Natl. Acad. Sci. U. S. A., 92, pp. 9181-9185 
504 |a Hanada, K., Mitamura, T., Fukasawa, M., Magistrado, P.A., Hori, T., Nishijima, M., Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum (2000) Biochem. J., 346, pp. 671-677 
504 |a Labaied, M., Dagan, A., Dellinger, M., Gèze, M., Egée, S., Thomas, S.L., Wang, C., Grellier, P., Anti-Plasmodium activity of ceramide analogs (2004) Malar. J., 3, pp. 49-59 
504 |a Staines, H.M., Dee, B.C., Shen, M., Clive Ellory, J., (2004) Blood Cell Mol. Dis., 32, pp. 344-348 
504 |a Schofield, L., Hewitt, M.C., Evans, K., Siomos, M.A., Seeberger, P.H., Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria (2002) Nature, 418, pp. 785-789 
504 |a Debierre-Grockiego, F., Schwarz, R.T., Immunological reactions in response to apicomplexan glycosylphosphatidylinositols (2010) Glycobiology, 20, pp. 801-811 
504 |a Thériault, C., Richard, D., Characterization of a putative Plasmodium falciparum SAC1 phosphoinositide-phosphatase homologue potentially required for survival during the asexual erythrocytic stages (2017) Sci. Rep., 7 (1), pp. 12710-12719 
520 3 |a Parasites of the genus Plasmodium responsible for Malaria are obligate intracellular pathogens residing in mammalian red blood cells, hepatocytes, or mosquito midgut epithelial cells. Regarding that detailed knowledge on the sphingolipid biosynthetic pathway of the apicomplexan protozoan parasites is scarce, different stages of Plasmodium falciparum were treated with tamoxifen in order to evaluate the effects of this drug on the glycosphingolipid biosynthesis. Thin layer chromatography, High performance reverse phase chromatography and UV-MALDI-TOF mass spectrometry were the tools used for the analysis. In the ring forms, the increase of NBD-phosphatidyl inositol biosynthesis was notorious but differences at NBD-GlcCer levels were undetectable. In trophozoite forms, an abrupt decrease of NBD-acylated GlcDHCer and NBD-GlcDHCer in addition to an increase of NBD-PC biosynthesis was observed. On the contrary, in schizonts, tamoxifen seems not to be producing substantial changes in lipid biosynthesis. Our findings indicate that in this parasite, tamoxifen is exerting an inhibitory action on Glucosylceramidesynthase and sphingomyelin synthase levels. Moreover, regarding that Plasmodium does not biosynthesize inositolphosphoceramides, the accumulation of phosphatidylinositol should indicate an inhibitory action on glycosylinositol phospholipid synthesis. © 2018 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, ANPCyT, PICT-2013-0736 
536 |a Detalles de la financiación: 20020130100476BA 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, PIP-11220110100660 
536 |a Detalles de la financiación: PME 125 
536 |a Detalles de la financiación: This work was supported by: Consejo Nacional de Investigaciones Científicas y Técnicas , Grant PIP-11220110100660 , Agencia Nacional de Promoción Científica y Tecnológica grant PICT-2013-0736 and Universidad de Buenos Aires grant 20020130100476BA . AMK ( FAPESP 2014/23417-7 ). The Ultraflex II (Bruker) TOF/TOF mass spectrometer was supported by ANPCyT grant PME 125 (CEQUIBIEM). M.L., V.G.D. and A.S.C. are members of Carrera de Investigador Científico y Tecnológico of CONICET. 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Química Orgánica - CONICET, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina 
593 |a Depto. de investigación, Instituto Nacional de Parasitología “Dr Mario Fatala Chaben”, ANLIS-Malbrán, Ministerio de Salud de la Nación, Av. Paseo Colon 568, Buenos Aires, 1063, Argentina 
593 |a Departamento de Parasitología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil 
690 1 0 |a GLUCOSYLCERAMIDE SYNTHASE 
690 1 0 |a GLYCOSPHINGOLIPIDS 
690 1 0 |a PLASMODIUM FALCIPARUM 
690 1 0 |a TAMOXIFEN 
690 1 0 |a CERAMIDE GLUCOSYLTRANSFERASE 
690 1 0 |a GLYCOSPHINGOLIPID 
690 1 0 |a PHOSPHATIDYLINOSITOL 
690 1 0 |a SPHINGOLIPID 
690 1 0 |a SPHINGOMYELIN 
690 1 0 |a SPHINGOMYELIN SYNTHASE 
690 1 0 |a TAMOXIFEN 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a GLYCOSPHINGOLIPID 
690 1 0 |a INOSITOLPHOSPHOCERAMIDES 
690 1 0 |a PHOSPHATIDYLINOSITOL 
690 1 0 |a SPHINGOLIPID 
690 1 0 |a TAMOXIFEN 
690 1 0 |a APICOMPLEXA 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DRUG EFFECT 
690 1 0 |a ENZYME INHIBITION 
690 1 0 |a HIGH PERFORMANCE LIQUID CHROMATOGRAPHY 
690 1 0 |a LIFE CYCLE STAGE 
690 1 0 |a LIPID STORAGE 
690 1 0 |a LIPOGENESIS 
690 1 0 |a MATRIX ASSISTED LASER DESORPTION IONIZATION TIME OF FLIGHT MASS SPECTROMETRY 
690 1 0 |a NONHUMAN 
690 1 0 |a PLASMODIUM FALCIPARUM 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a REVERSED PHASE LIQUID CHROMATOGRAPHY 
690 1 0 |a SCHIZONT 
690 1 0 |a SPHINGOLIPID METABOLISM 
690 1 0 |a THIN LAYER CHROMATOGRAPHY 
690 1 0 |a TROPHOZOITE 
690 1 0 |a APICOMPLEXA 
690 1 0 |a BIOSYNTHESIS 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a ERYTHROCYTE 
690 1 0 |a LIFE CYCLE STAGE 
690 1 0 |a MASS SPECTROMETRY 
690 1 0 |a METABOLISM 
690 1 0 |a PARASITOLOGY 
690 1 0 |a PLASMODIUM FALCIPARUM 
690 1 0 |a PROTOZOAL INFECTION 
690 1 0 |a APICOMPLEXA 
690 1 0 |a BIOSYNTHETIC PATHWAYS 
690 1 0 |a CHROMATOGRAPHY, REVERSE-PHASE 
690 1 0 |a ERYTHROCYTES 
690 1 0 |a GLYCOSPHINGOLIPIDS 
690 1 0 |a LIFE CYCLE STAGES 
690 1 0 |a MASS SPECTROMETRY 
690 1 0 |a PHOSPHATIDYLINOSITOLS 
690 1 0 |a PLASMODIUM FALCIPARUM 
690 1 0 |a PROTOZOAN INFECTIONS 
690 1 0 |a SPHINGOLIPIDS 
690 1 0 |a TAMOXIFEN 
700 1 |a Landoni, M. 
700 1 |a Duschak, V.G. 
700 1 |a Katzin, A.M. 
700 1 |a Couto, A.S. 
773 0 |d Elsevier B.V., 2018  |g v. 497  |h pp. 1082-1088  |k n. 4  |p Biochem. Biophys. Res. Commun.  |x 0006291X  |w (AR-BaUEN)CENRE-905  |t Biochemical and Biophysical Research Communications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042561524&doi=10.1016%2fj.bbrc.2018.02.183&partnerID=40&md5=02ab4d82129223c4ad1bf46b0f8073f2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.bbrc.2018.02.183  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0006291X_v497_n4_p1082_Pinero  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006291X_v497_n4_p1082_Pinero  |y Registro en la Biblioteca Digital 
961 |a paper_0006291X_v497_n4_p1082_Pinero  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 78015