Mapping extinction debt highlights conservation opportunities for birds and mammals in the South American Chaco

Habitat loss is the primary cause of local extinctions. Yet, there is considerable uncertainty regarding how fast species respond to habitat loss, and how time-delayed responses vary in space. We focused on the Argentine Dry Chaco (c. 32 million ha), a global deforestation hotspot, and tested for ti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Semper-Pascual, A.
Otros Autores: Macchi, L., Sabatini, F.M, Decarre, J., Baumann, M., Blendinger, P.G, Gómez-Valencia, B., Mastrangelo, M.E, Kuemmerle, T.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2018
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 24550caa a22018017a 4500
001 PAPER-16979
003 AR-BaUEN
005 20230518204804.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85040718285 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JAPEA 
100 1 |a Semper-Pascual, A. 
245 1 0 |a Mapping extinction debt highlights conservation opportunities for birds and mammals in the South American Chaco 
260 |b Blackwell Publishing Ltd  |c 2018 
270 1 0 |m Semper-Pascual, A.; Geography Department, Humboldt-Universität zu BerlinGermany; email: asuncion.semper.pascual@geo.hu-berlin.de 
506 |2 openaire  |e Política editorial 
504 |a Bates, D., Maechler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using lme4 (2015) Journal of Statistical Software, 67, pp. 1-48 
504 |a Baumann, M., Gasparri, I., Piquer-Rodríguez, M., Gavier Pizarro, G., Griffiths, P., Hostert, P., Kuemmerle, T., Carbon emissions from agricultural expansion and intensification in the Chaco (2017) Global Change Biology, 23, pp. 1902-1916. , https://doi.org/10.1111/gcb.13521 
504 |a Beisiegel, B., Mantovani, W., Habitat use, home range and foraging preferences of the coati Nasua nasua in a pluvial tropical Atlantic forest area (2006) Journal of Zoology, 269, pp. 77-87. , https://doi.org/10.1111/j.1469-7998.2006.00083.x 
504 |a Bobick, J.E., Peffer, M., (1993) Science and technology desk reference, , #x0026;, Washington, DC, Gale Research Inc 
504 |a Brooks, T.M., Pimm, S.L., Oyugi, J.O., Time lag between deforestation and bird extinction in tropical forest fragments (1999) Conservation Biology, 13, pp. 1140-1150. , https://doi.org/10.1046/j.1523-1739.1999.98341.x 
504 |a Bucher, E.H., Huszar, P.C., Sustainable management of the Gran Chaco of South America: Ecological promise and economic constraints (1999) Journal of Environmental Management, 57, pp. 99-108. , https://doi.org/10.1006/jema.1999.0290 
504 |a Burnham, K.P., Anderson, D.R., (2002) Model selection and multi-model inference: A practical information-theoretic approach, , #x0026;, New York, NY, Springer 
504 |a Cabrera, A., Willink, A., (1973) Biogeografía de América Latina. Programa Regional de Desarrollo Científico y Tecnológico, Serie Biología, , #x0026;, Monografía 
504 |a Caldas, M.M., Goodin, D., Sherwood, S., Campos Krauer, J.M., Wisely, S.M., Land-cover change in the Paraguayan Chaco: 2000–2011 (2015) Journal of Land Use Science, 10, pp. 1-18. , https://doi.org/10.1080/1747423X.2013.807314 
504 |a Canevari, M., Vaccaro, O., (2007) Guía de mamíferos del sur de América del Sur, , #x0026;, Buenos Aires, LOLA 
504 |a Carlson, K.M., Curran, L.M., Asner, G.P., Pittman, A.M., Trigg, S.N., Adeney, J.M., Carbon emissions from forest conversion by Kalimantan oil palm plantations (2013) Nature Climate Change, 3, pp. 283-287 
504 |a Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M., Palmer, T.M., Accelerated modern human–induced species losses: Entering the sixth mass extinction (2015) Science Advances, 1. , https://doi.org/10.1126/sciadv.1400253 
504 |a Chen, Y., Peng, S., Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals (2017) Scientific Reports, 7, p. 44305. , https://doi.org/10.1038/srep44305 
504 |a Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.-Y., Mao, C.X., Chazdon, R.L., Longino, J.T., Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages (2012) Journal of Plant Ecology, 5, pp. 3-21. , https://doi.org/10.1093/jpe/rtr044 
504 |a Cowlishaw, G., Predicting the pattern of decline of African primate diversity: An extinction debt from historical deforestation (1999) Conservation Biology, 13, pp. 1183-1193. , https://doi.org/10.1046/j.1523-1739.1999.98433.x 
504 |a Decarre, J., (2015) Diversity and structure of bird and mammal communities in the Semiarid Chaco Region: response to agricultural practices and landscape alterations, , Unpublished doctoral thesis, Imperial College London, London, UK 
504 |a Deconchat, M., Brockerhoff, E., Barbaro, L., Effects of surrounding landscape composition on the conservation value of native and exotic habitats for native forest birds (2009) Forest Ecology and Management, 258, pp. S196-S204. , https://doi.org/10.1016/j.foreco.2009.08.003 
504 |a Ehrlich, P.R., Pringle, R.M., Where does biodiversity go from here? A grim business-as-usual forecast and a hopeful portfolio of partial solutions (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 11579-11586. , https://doi.org/10.1073/pnas.0801911105 
504 |a Essl, F., Dullinger, S., Rabitsch, W., Hulme, P.E., Pyšek, P., Wilson, J.R., Richardson, D.M., Delayed biodiversity change: No time to waste (2015) Trends in Ecology & Evolution, 30, pp. 375-378. , https://doi.org/10.1016/j.tree.2015.05.002 
504 |a Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Gibbs, H.K., Global consequences of land use (2005) Science, 309, pp. 570-574. , https://doi.org/10.1126/science.1111772 
504 |a Gasparri, N.I., Baldi, G., Regional patterns and controls of biomass in semiarid woodlands: Lessons from the Northern Argentina Dry Chaco (2013) Regional Environmental Change, 13, pp. 1131-1144. , https://doi.org/10.1007/s10113-013-0422-x 
504 |a Gómez-Valencia, B., (2017) Medianos y grandes mamíferos en fragmentos de bosque de tres quebrachos, sudoeste de la provincia del Chaco, , Tesis de Doctorado, Universidad De Buenos Aires 
504 |a Grau, H.R., Gasparri, N.I., Aide, T.M., Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina (2005) Environmental Conservation, 32, pp. 140-148. , https://doi.org/10.1017/S0376892905002092 
504 |a Grzimek, B., (1990) Grzimek's encyclopedia of mammals, , New York, NY, McGraw-Hill 
504 |a Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A., Loveland, T., High-resolution global maps of 21st-century forest cover change (2013) Science, 342, pp. 850-853. , https://doi.org/10.1126/science.1244693 
504 |a Hanski, I., Ovaskainen, O., Extinction debt at extinction threshold (2002) Conservation Biology, 16, pp. 666-673. , https://doi.org/10.1046/j.1523-1739.2002.00342.x 
504 |a He, F., Hubbell, S.P., Species-area relationships always overestimate extinction rates from habitat loss (2011) Nature, 473, pp. 368-371. , https://doi.org/10.1038/nature09985 
504 |a Helm, A., Hanski, I., Pärtel, M., Slow response of plant species richness to habitat loss and fragmentation (2006) Ecology Letters, 9, pp. 72-77 
504 |a Herrault, P.-A., Larrieu, L., Cordier, S., Gimmi, U., Lachat, T., Ouin, A., Sheeren, D., Combined effects of area, connectivity, history and structural heterogeneity of woodlands on the species richness of hoverflies (Diptera: Syrphidae) (2016) Landscape Ecology, 31, pp. 877-893. , https://doi.org/10.1007/s10980-015-0304-3 
504 |a del Hoyo, J., (2015) Handbook of the birds of the world alive, , Barcelona, Spain, Lynx Edicions 
504 |a Hsieh, T.C., Ma, K.H., Chao, A., (2016) iNEXT: iNterpolation and EXTrapolation for species diversity, , #x0026;, R package version 2.0.12 
504 |a Hylander, K., Ehrlén, J., The mechanisms causing extinction debts (2013) Trends in Ecology & Evolution, 28, pp. 341-346. , https://doi.org/10.1016/j.tree.2013.01.010 
504 |a (2016) The IUCN Red List of Threatened Species, , Version 2016-3 
504 |a Kasper, C.B., Soares, J.B., Freitas, T.R., Differential patterns of home-range, net displacement and resting sites use of Conepatus chinga in southern Brazil (2012) Mammalian Biology-Zeitschrift für Säugetierkunde, 77, pp. 358-362. , https://doi.org/10.1016/j.mambio.2012.03.006 
504 |a Krauss, J., Bommarco, R., Guardiola, M., Heikkinen, R.K., Helm, A., Kuussaari, M., Pino, J., Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels (2010) Ecology Letters, 13, pp. 597-605. , https://doi.org/10.1111/j.1461-0248.2010.01457.x 
504 |a Kuemmerle, T., Altrichter, M., Baldi, G., Cabido, M., Camino, M., Cuellar, E., Zak, M., Forest conservation: Remember Gran Chaco (2017) Science, 355, p. 465 
504 |a Kuussaari, M., Bommarco, R., Heikkinen, R.K., Helm, A., Krauss, J., Lindborg, R., Roda, F., Extinction debt: A challenge for biodiversity conservation (2009) Trends in Ecology & Evolution, 24, pp. 564-571. , https://doi.org/10.1016/j.tree.2009.04.011 
504 |a Lindborg, R., Eriksson, O., Historical landscape connectivity affects present plant species diversity (2004) Ecology, 85, pp. 1840-1845. , https://doi.org/10.1890/04-0367 
504 |a Lira, P.K., Ewers, R.M., Banks-Leite, C., Pardini, R., Metzger, J.P., Evaluating the legacy of landscape history: Extinction debt and species credit in bird and small mammal assemblages in the Brazilian Atlantic Forest (2012) Journal of Applied Ecology, 49, pp. 1325-1333. , https://doi.org/10.1111/j.1365-2664.2012.02214.x 
504 |a Macchi, L., Grau, H.R., Zelaya, P.V., Marinaro, S., Trade-offs between land use intensity and avian biodiversity in the dry Chaco of Argentina: A tale of two gradients (2013) Agriculture, Ecosystems & Environment, 174, pp. 11-20. , https://doi.org/10.1016/j.agee.2013.04.011 
504 |a MacHunter, J., Wright, W., Loyn, R., Rayment, P., Bird declines over 22 years in forest remnants in southeastern Australia: Evidence of faunal relaxation? (2006) Canadian Journal of Forest Research, 36, pp. 2756-2768. , https://doi.org/10.1139/x06-159 
504 |a Mastrangelo, M.E., Gavin, M.C., Trade-offs between cattle production and bird conservation in an agricultural frontier of the Gran Chaco of Argentina (2012) Conservation Biology, 26, pp. 1040-1051. , https://doi.org/10.1111/j.1523-1739.2012.01904.x 
504 |a Mastrangelo, M.E., Gavin, M.C., Impacts of agricultural intensification on avian richness at multiple scales in Dry Chaco forests (2014) Biological Conservation, 179, pp. 63-71. , https://doi.org/10.1016/j.biocon.2014.08.020 
504 |a May, R.M., Lawton, J.H., (1995) Extinction rates, , #x0026;, Oxford, Oxford University Press 
504 |a McGarigal, K., (2014) FRAGSTATS help, , Amherst, MA, University of Massachusetts 
504 |a Metzger, J.P., Martensen, A.C., Dixo, M., Bernacci, L.C., Ribeiro, M.C., Teixeira, A.M.G., Pardini, R., Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region (2009) Biological Conservation, 142, pp. 1166-1177. , https://doi.org/10.1016/j.biocon.2009.01.033 
504 |a Mitchell, M.S., Lancia, R.A., Gerwin, J.A., Using landscape-level data to predict the distribution of birds on a managed forest: Effects of scale (2001) Ecological Applications, 11, pp. 1692-1708. , https://doi.org/10.1890/1051-0761(2001)011[1692:ULLDTP]2.0.CO;2 
504 |a Murphy, P.G., Lugo, A.E., Ecology of tropical dry forest (1986) Annual Review of Ecology and Systematics, 17, pp. 67-88. , https://doi.org/10.1146/annurev.es.17.110186.000435 
504 |a Nori, J., Torres, R., Lescano, J.N., Cordier, J.M., Periago, M.E., Baldo, D., Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world (2016) Diversity and Distributions, 22, pp. 1212-1219. , https://doi.org/10.1111/ddi.12497 
504 |a Numata, I., Cochrane, M.A., Souza, C.M., Jr., Sales, M.H., Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon (2011) Environmental Research Letters, 6, p. 044003. , https://doi.org/10.1088/1748-9326/6/4/044003 
504 |a Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Wagner, H., (2016) Vegan: Community Ecology Package, , R package version 2.4-1 
504 |a Ovaskainen, O., Hanski, I., Transient dynamics in metapopulation response to perturbation (2002) Theoretical Population Biology, 61, pp. 285-295. , https://doi.org/10.1006/tpbi.2002.1586 
504 |a Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Sexton, J.O., The biodiversity of species and their rates of extinction, distribution, and protection (2014) Science, 344, p. 1246752. , https://doi.org/10.1126/science.1246752 
504 |a Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., (2016) nlme: Linear and nonlinear mixed effects models, , #x0026;, R package version 3.1-128 
504 |a Quiroga, V.A., Noss, A.J., Boaglio, G.I., Di Bitetti, M.S., Local and continental determinants of giant anteater (Myrmecophaga tridactyla) abundance: Biome, human and jaguar roles in population regulation (2016) Mammalian Biology-Zeitschrift für Säugetierkunde, 81, pp. 274-280. , https://doi.org/10.1016/j.mambio.2016.03.002 
504 |a Ridgely, R.S., Tudor, G., (1994) The birds of South America. Vol. 2, The suboscine passerines: Ovenbirds and woodcreepers, typical and ground antbirds, gnateaters and tapaculos, tyrant flycatchers, cotingas and manakins, , #x0026;, Oxford, Oxford University Press 
504 |a Sales, L.P., Hayward, M.W., Zambaldi, L., Passamani, M., de Melo, F.R., Loyola, R., Time-lags in primate occupancy: A study case using dynamic models (2015) Natureza & Conservação, 13, pp. 139-144. , https://doi.org/10.1016/j.ncon.2015.10.003 
504 |a Schai-Braun, S.C., Hackländer, K., Home range use by the European hare (Lepus europaeus) in a structurally diverse agricultural landscape analysed at a fine temporal scale (2014) Acta Theriologica, 59, pp. 277-287. , https://doi.org/10.1007/s13364-013-0162-9 
504 |a Schielzeth, H., Simple means to improve the interpretability of regression coefficients (2010) Methods in Ecology and Evolution, 1, pp. 103-113. , https://doi.org/10.1111/j.2041-210X.2010.00012.x 
504 |a Schiesari, L., Waichman, A., Brock, T., Adams, C., Grillitsch, B., Pesticide use and biodiversity conservation in the Amazonian agricultural frontier (2013) Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, p. 20120378. , https://doi.org/10.1098/rstb.2012.0378 
504 |a Semper-Pascual, A., Macchi, L., Sabatini, F.M., Decarre, J., Baumann, M., Blendinger, P.G., Kuemmerle, T., Data from: Mapping extinction debt highlights conservation opportunities for birds and mammals in the South American Chaco (2017) Dryad Digital Repository, , https://doi.org/10.5061/dryad.d362v 
504 |a Short, L.L., (1975) A zoogeographic analysis of the South American chaco avifauna, , Bulletin of the AMNH; v. 154, article 3 
504 |a Snow, D., Lill, A., Longevity records for some neotropical land birds (1974) The Condor, 76, pp. 262-267. , https://doi.org/10.2307/1366339 
504 |a Soga, M., Koike, S., Mapping the potential extinction debt of butterflies in a modern city: Implications for conservation priorities in urban landscapes (2013) Animal Conservation, 16, pp. 1-11. , https://doi.org/10.1111/j.1469-1795.2012.00572.x 
504 |a (2005) Evaluación Ecorregional del Gran Chaco Americano/Gran Chaco Americano Ecoregional Assessment, , Buenos Aires, Fundación Vida Silvestre Argentina 
504 |a Tilman, D., May, R.M., Lehman, C.L., Nowak, M.A., Habitat destruction and the extinction debt (1994) Nature, 371, pp. 65-66. , https://doi.org/10.1038/371065a0 
504 |a Torres, R., Gasparri, N.I., Blendinger, P.G., Grau, H.R., Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: A hierarchical integrative multi-taxa study (2014) Regional Environmental Change, 14, pp. 1549-1561. , https://doi.org/10.1007/s10113-014-0604-1 
504 |a VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., Storlie, C., (2014) SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises, , #x0026;, R package version 1.1-221 
504 |a Vellend, M., Verheyen, K., Jacquemyn, H., Kolb, A., Van Calster, H., Peterken, G., Hermy, M., Extinction debt of forest plants persists for more than a century following habitat fragmentation (2006) Ecology, 87, pp. 542-548. , https://doi.org/10.1890/05-1182 
504 |a Vogt, P., Riitters, K.H., Estreguil, C., Kozak, J., Wade, T.G., Wickham, J.D., Mapping spatial patterns with morphological image processing (2007) Landscape Ecology, 22, pp. 171-177. , https://doi.org/10.1007/s10980-006-9013-2 
504 |a Wagenmakers, E.-J., Farrell, S., AIC model selection using Akaike weights (2004) Psychonomic Bulletin & Review, 11, pp. 192-196. , https://doi.org/10.3758/BF03206482 
504 |a Wearn, O.R., Reuman, D.C., Ewers, R.M., Extinction debt and windows of conservation opportunity in the Brazilian Amazon (2012) Science, 337, pp. 228-232. , https://doi.org/10.1126/science.1219013 
504 |a Zuur, A.F., Ieno, E.N., (2016) Beginner's guide to zero-inflated models with R, , #x0026;, Newburgh, UK, Highland Statistics 
520 3 |a Habitat loss is the primary cause of local extinctions. Yet, there is considerable uncertainty regarding how fast species respond to habitat loss, and how time-delayed responses vary in space. We focused on the Argentine Dry Chaco (c. 32 million ha), a global deforestation hotspot, and tested for time-delayed response of bird and mammal communities to landscape transformation. We quantified the magnitude of extinction debt by modelling contemporary species richness as a function of either contemporary or past (2000 and 1985) landscape patterns. We then used these models to map communities' extinction debt. We found strong evidence for an extinction debt: landscape structure from 2000 explained contemporary species richness of birds and mammals better than contemporary and 1985 landscapes. This suggests time-delayed responses between 10 and 25 years. Extinction debt was especially strong for forest specialists. Projecting our models across the Chaco highlighted areas where future local extinctions due to unpaid extinction debt are likely. Areas recently converted to agriculture had highest extinction debt, regardless of the post-conversion land use. Few local extinctions were predicted in areas with remaining larger forest patches. Synthesis and applications. The evidence for an unpaid extinction debt in the Argentine Dry Chaco provides a substantial window of opportunity for averting local biodiversity losses. However, this window may close rapidly if conservation activities such as habitat restoration are not implemented swiftly. Our extinction debt maps highlight areas where such conservation activities should be implemented. © 2018 The Authors. Journal of Applied Ecology © 2018 British Ecological Society  |l eng 
536 |a Detalles de la financiación: Universidad Nacional de Mar del Plata 
536 |a Detalles de la financiación: Instituto Nacional de Investigaciones Agropecuarias, INTA 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Facultad de Ciencias Físicas y Matemáticas 
536 |a Detalles de la financiación: Universidad Nacional de Tucumán 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: 031B0034A 
536 |a Detalles de la financiación: Deutsche Forschungsgemeinschaft, KU 2458/5-1 
536 |a Detalles de la financiación: California Department of Fish and Game, KU 2458/5-1 
536 |a Detalles de la financiación: Deutsche Forschungsgemeinschaft 
536 |a Detalles de la financiación: Bundesministerium für Bildung und Forschung, 031B0034A 
536 |a Detalles de la financiación: 1Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany; 2Instituto EcologDᴀa Regional (IER), CONICET - Universidad Nacional de Tucumán, Tucumán, Argentina; 3Centro de InvestigaciD唀n en Recursos Naturales (CIRN-IRB), Instituto Nacional de TecnologDᴀa Agropecuaria (INTA), CD唀rdoba, Ar4gGernutpinoa ; de Estudios de Sistemas EcolD?gicos en Ambientes AgrDᴀcolas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; 5CONICET - Grupo de Estudios de Agroecosistemas y Paisajes Rurales (GEAP), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina and 6Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Berlin, Germany 
536 |a Detalles de la financiación: Deutsche Forschungsgemeinschaft, Grant/ Award Number: Project KU 2458/5-1; German Ministry of Education and Research, Grant/Award Number: 031B0034A 
536 |a Detalles de la financiación: We thank H. Ricardo Grau, N. Ignacio Gasparri, T. Mitchell Aide, the Argentine National Institute of Agrarian Technologies (INTA) and the Consejo Nacional de Investigaciones CientDᴀficas y Técnicas (CONICET) for sharing data. We are grateful to C. Levers and G.I. Gavier-Pizarro for helpful discussions. We also thank E.A. Law for language check. We gratefully acknowledge funding by the German Ministry of Education and Research (BMBF, project PASANOA, 031B0034A) and the German Research Foundation (DFG, project KU 2458/5-1). We are grateful to two anonymous reviewers and Dr. Banks-Leite for extremely thoughtful and constructive comments on prior manuscript versions. 
593 |a Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany 
593 |a Instituto Ecología Regional (IER), CONICET - Universidad Nacional de Tucumán, Tucumán, Argentina 
593 |a Centro de Investigación en Recursos Naturales (CIRN-IRB), Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina 
593 |a Grupo de Estudios de Sistemas Ecológicos en Ambientes Agrícolas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a CONICET - Grupo de Estudios de Agroecosistemas y Paisajes Rurales (GEAP), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina 
593 |a Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Berlin, Germany 
690 1 0 |a AGRICULTURAL EXPANSION 
690 1 0 |a BIODIVERSITY LOSS 
690 1 0 |a DEFORESTATION 
690 1 0 |a EXTINCTION DEBT 
690 1 0 |a HABITAT LOSS 
690 1 0 |a LANDSCAPE TRANSFORMATION 
690 1 0 |a RESTORATION 
690 1 0 |a TIME-DELAYED RESPONSES 
690 1 0 |a TROPICAL DRY FOREST 
690 1 0 |a AGRICULTURAL EXTENSION 
690 1 0 |a BIODIVERSITY 
690 1 0 |a COMMUNITY COMPOSITION 
690 1 0 |a CONSERVATION STATUS 
690 1 0 |a DEFORESTATION 
690 1 0 |a HABITAT LOSS 
690 1 0 |a LANDSCAPE ECOLOGY 
690 1 0 |a LOCAL EXTINCTION 
690 1 0 |a MAMMAL 
690 1 0 |a SPECIES RICHNESS 
690 1 0 |a MAMMALIA 
651 4 |a GRAN CHACO 
651 4 |a ARGENTINA 
651 4 |a CHACO [ARGENTINA] 
651 4 |a GRAN CHACO 
650 1 7 |2 spines  |a BIRD 
650 1 7 |2 spines  |a AVES 
700 1 |a Macchi, L. 
700 1 |a Sabatini, F.M. 
700 1 |a Decarre, J. 
700 1 |a Baumann, M. 
700 1 |a Blendinger, P.G. 
700 1 |a Gómez-Valencia, B. 
700 1 |a Mastrangelo, M.E. 
700 1 |a Kuemmerle, T. 
773 0 |d Blackwell Publishing Ltd, 2018  |g v. 55  |h pp. 1218-1229  |k n. 3  |p J. Appl. Ecol.  |x 00218901  |w (AR-BaUEN)CENRE-5411  |t Journal of Applied Ecology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040718285&doi=10.1111%2f1365-2664.13074&partnerID=40&md5=e74545c7c1d3e64f4baaffaa98bb48f5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/1365-2664.13074  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00218901_v55_n3_p1218_SemperPascual  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218901_v55_n3_p1218_SemperPascual  |y Registro en la Biblioteca Digital 
961 |a paper_00218901_v55_n3_p1218_SemperPascual  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77932