In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts

Nanoparticle catalysts comprising two PtSn alloys with different Pt:Sn atomic ratios and a Sn modified Pt catalyst were prepared in order to study the effect of the particle nanostructures on the activity towards the ethanol electrooxidation and the selectivity to CO2. An accurate model of the elect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Calvillo, L.
Otros Autores: Mendez De Leo, L., Thompson, S.J, Price, S.W.T, Calvo, E.J, Russell, A.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15097caa a22012977a 4500
001 PAPER-16879
003 AR-BaUEN
005 20230518204756.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85032214475 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JECHE 
100 1 |a Calvillo, L. 
245 1 3 |a In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Calvillo, L.; Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, Italy; email: laura.calvillolamana@unipd.it 
506 |2 openaire  |e Política editorial 
504 |a Lamy, C., Lima, A., LeRhun, V., Delime, F., Coutanceau, C., Léger, J.-M., Recent advances in the development of direct alcohol fuel cells (DAFC) (2002) J. Power Sources, 105, pp. 283-296 
504 |a Spendelow, J.S., Wieckowski, A., Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media (2007) Phys. Chem. Chem. Phys., 9, pp. 2654-2675 
504 |a Igarashi, H., Fujino, T., Zhu, Y., Uchida, H., Watanabe, M., CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism (2001) Phys. Chem. Chem. Phys., 3, pp. 306-314 
504 |a Colmenares, L., Wang, H., Jusys, Z., Jiang, L., Yan, S., Sun, G.Q., Behm, R.J., Ethanol oxidation on novel, carbon supported Pt alloy catalysts-model studies under defined diffusion conditions (2006) Electrochim. Acta, 52, pp. 221-233 
504 |a Herrera-Méndez, H.D., Roquero, P., Smit, M.A., Ordóñez, L.C., Carbon-supported platinum molybdenum electro-catalysts and their electro-activity toward ethanol oxidation (2011) Int. J. Electrochem. Sci., 6, pp. 4454-4469 
504 |a Yang, G., Frenkel, A.I., Su, D., Teng, X., Enhanced electrokinetics of C–C bond splitting during ethanol oxidation by using a Pt/Rh/Sn catalyst with a partially oxidized Pt and Rh core and a SnO2 shell (2016) ChemCatChem, 8, pp. 1-6 
504 |a Jin, J.-M., Sheng, T., Lin, X., Kavanagh, R., Hamer, P., Hu, P., Hardacre, C., Lin, W.-F., The origin of high activity but low CO2 selectivity on binary PtSn in the direct ethanol fuel cell (2014) Phys. Chem. Chem. Phys., 16, pp. 9432-9440 
504 |a Kowal, A., Li, M., Shao, M., Sasaki, K., Vukmirovic, M.B., Zhang, J., Marinkovic, N.S., Adzic, R.R., Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2 (2009) Nat. Mater., 8, pp. 325-330 
504 |a Hayden, B.E., Rendall, M.E., South, O., The stability and electro-oxidation of carbon monoxide on model electrocatalysts: Pt(111)–Sn(2 × 2) and Pt(1 1 1)–Sn(√ 3 × √ 3)R30° (2005) J. Mol. Catal. A Chem., 228, pp. 55-65 
504 |a Crabb, E.M., Marshall, R., Thompsett, D., Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry (2000) J. Electrochem. Soc., 147, pp. 4440-4447 
504 |a García-Rodríguez, S., Somodi, F., Borbáth, I., Margitfalvi, J.L., Peña, M.A., Fierro, J.L.G., Rojas, S., Controlled synthesis of Pt-Sn/C fuel cell catalysts with exclusive Sn-Pt interaction. Application in CO and ethanol electrooxidation reactions (2009) Appl. Catal. B Environ., 91, pp. 83-91 
504 |a Lopez-Suarez, F.E., Carvalho-Filho, C.T., Bueno-Lopez, A., Arboleda, J., Echavarrıa, A., Eguiluz, K.I.B., Salazar-Banda, G.R., Platinum–tin/carbon catalysts for ethanol oxidation: influence of Sn content on the electroactivity and structural characteristics (2015) Int. J. Hydrog. Energy, 40, pp. 12674-12686 
504 |a Du, W., Yang, G., Wong, E., Deskings, N.A., Frenkel, A.I., Su, D., Teng, X., Platinum-tin oxide core–shell catalysts for efficient electro-oxidation of ethanol (2014) J. Am. Chem. Soc., 136, pp. 10862-10865 
504 |a Alayoglu, S., Nilekar, A.U., Mavrikakis, M., Eichhorn, B., Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen (2008) Nat. Mater., 7, pp. 333-338 
504 |a Alayoglu, S., Eichhorn, B., Rh–Pt bimetallic catalysts: synthesis, characterization, and catalysis of core–shell, alloy, and monometallic nanoparticles (2008) J. Am. Chem. Soc., 130, pp. 17479-17486 
504 |a Parsons, R., VanderNoot, T., The oxidation of small organic molecules: a survey of recent fuel cell related research (1988) J. Electroanal. Chem., 257, pp. 9-45 
504 |a Fievet, F., Lagier, J.P., Blin, B., Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles (1989) Solid State lonics, 32-33, pp. 198-205 
504 |a Zhou, J.-H., He, J.-P., Ji, Y.-J., Dang, W.-J., Liu, X.-L., Zhao, G.-W., Zhang, C.-X., Hu, H.-P., CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation (2007) Electrochim. Acta, 52, pp. 4691-4695 
504 |a Boxall, D.L., Lukehart, C.M., Rapid synthesis of Pt or Pd/Carbon nanocomposites using microwave irradiation (2001) Chem. Mater., 13, pp. 806-810 
504 |a Li, W., Zhou, W., Li, H., Zhou, Z., Zhou, B., Sun, G., Xin, Q., Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell (2004) Electrochim. Acta, 49, pp. 1045-1055 
504 |a Kim, S., Park, S.-J., Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters (2007) Electrochim. Acta, 52, pp. 3013-3021 
504 |a Wise, A.M., Richardson, P.W., Price, S.W.T., Chouchelamane, G., Calvillo, L., Hendra, P.J., Toney, M.F., Russell, A.E., Inhibitive effect of Pt on Pd-hydride formation of Pd@Pt core-shell electrocatalysts: an in situ EXAFS and XRD study, Electrochim. Acta, (under revision); Ravel, B., Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT (2005) J. Synchrotron Radiat., 12, pp. 537-541 
504 |a Newville, M., EXAFS analysis using FEFF and FEFFIT (2001) J. Synchrotron Radiat., 8, pp. 96-100 
504 |a Zhou, W., Liu, L., Li, B., Wu, P., Song, Q., Structural, elastic and electronic properties of intermetallics in the Pt–Sn system: a density functional investigation (2009) Comput. Mater. Sci., 46, pp. 921-931 
504 |a Wang, X., Altmann, L., Stöver, J., Zielasek, V., Bäumer, M., Al-Shamery, K., Borchert, H., Kolny-Olesiak, J., Pt/Sn intermetallic, core/shell and alloy nanoparticles: colloidal synthesis and structural control (2013) Chem. Mater., 25, pp. 1400-1407 
504 |a Zamlynny, V., Lipkowski, J., In Advances in Electrochemical Science and Engineering (2006), 9. , WILEY Weinheim; Zamlynny, V., Zawisza, I., Lipkowski, J., PM FTIRRAS studies of potential-controlled transformations of a monolayer and a bilayer of 4-pentadecylpyridine, a model surfactant, adsorbed on a Au(111) electrode surface (2003) Langmuir, 19, pp. 132-145 
504 |a Kim, J.H., Choi, S.M., Nam, S.H., Seo, M.H., Choi, S.H., Kim, W.B., Influence of Sn content on PtSn/C catalysts for electrooxidation of C1–C3 alcohols: synthesis, characterization, and electrocatalytic activity (2008) Appl. Catal. B Environ., 82, pp. 89-102 
504 |a Sieben, J.M., Duarte, M.M.E., Nanostructured Pt and Pt–Sn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation (2001) Int. J. Hydrog. Energy, 36, pp. 3313-3321 
504 |a Li, G., Pickup, P.G., Decoration of carbon-supported Pt catalysts with Sn to promote electro-oxidation of ethanol (2007) J. Power Sources, 173, pp. 121-129 
504 |a Mukerjee, S., Mcbreen, J., An in situ X-ray absorption spectroscopy investigation of the effect of Sn additions to carbon-supported Pt electrocatalysts: part I (1999) J. Electrochem. Soc., 146, pp. 600-606 
504 |a Zignani, S.C., Gonzalez, E.R., Baglio, V., Siracusano, S., Aricò, A.S., Investigation of a Pt3Sn/C electro-catalyst in a direct ethanol fuel cell operating at low temperatures for portable applications (2012) Int. J. Electrochem. Sci., 7, pp. 3155-3166 
504 |a Almeida, T.S., Kokoh, K.B., De Andrade, A.R., Effect of Ni on Pt/C and PtSn/C prepared by the Pechini method (2011) Int. J. Hydrog. Energy, 36, pp. 3803-3810 
504 |a Ayoub, J.M.S., De Souza, R.F.B., Silva, J.C.M., Piasentin, R.M., Spinacé, E.V., Santos, M.C., Neto, A.O., Ethanol electro-oxidation on PtSn/C-ATO electrocatalysts (2012) Int. J. Electrochem. Sci., 7, pp. 11351-11362 
504 |a Del Colle, V., Souza-Garcia, J., Tremiliosi-Filho, G., Herrero, E., Feliu, J.M., Electrochemical and spectroscopic studies of ethanoloxidation on Pt stepped surfaces modified by tin adatoms (2011) Phys. Chem. Chem. Phys., 13, pp. 12163-12172 
504 |a Simoes, F.C., dos Anjos, D.M., Vigier, F., Léger, J.-M., Hahn, F., Coutanceau, C., Gonzalez, E.R., Kokoh, K.B., Electroactivity of tin modified platinum electrodes for ethanol electrooxidation (2007) J. Power Sources, 167, pp. 1-10 
504 |a De Souza, R.F.B., Parreira, L.S., Silva, J.C.M., Simoes, F.C., Calegaro, M.L., Giz, M.J., Camara, C.A., Santos, M.C., PtSnCe/C electrocatalysts for ethanol oxidation: DEFC and FTIR “in-situ” studies (2011) Int. J. Hydrog. Energy, 36, pp. 11519-11527 
504 |a Shao, M.H., Adzic, R.R., Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study (2005) Electrochim. Acta, 50, pp. 2415-2422 
504 |a Zhou, W.J., Song, S.Q., Li, W.Z., Zhou, Z.H., Sun, G.Q., Xina, Q., Douvartzides, S., Tsiakaras, P., Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance (2008) J. Power Sources, 140, pp. 50-58 
520 3 |a Nanoparticle catalysts comprising two PtSn alloys with different Pt:Sn atomic ratios and a Sn modified Pt catalyst were prepared in order to study the effect of the particle nanostructures on the activity towards the ethanol electrooxidation and the selectivity to CO2. An accurate model of the electronic and structural properties, obtained by ex situ analysis, was established. Alloying of Sn with Pt causes the expansion of the lattice parameter of Pt and modifies its electronic structure. In contrast, the deposition of Sn on the Pt surface has neither effect. The activity of the catalysts towards ethanol oxidation was established voltammetrically and the CO2 selectivity via in situ Fourier transform infrared spectroscopy (FTIRS). Results indicated that the modification of the electronic environment of Pt in Pt-Sn alloys results in a weaker adsorption of the intermediates (acetaldehyde and acetic acid), which desorb easily from the surface of the catalyst resulting in incomplete oxidation to CO2. In contrast, when the electronic structure is not perturbed (Sn modified Pt sample), the amount of CO2 produced increases. The stability of the different nanostructures under working conditions was investigated by in situ X-ray absorption spectroscopy (XAS) measurements, which show that initially both the Sn modified Pt and Pt-Sn alloy nanostructures are stable under applied potential in the potential window studied and in presence of ethanol. Accelerated aging studies showed that the Sn modified Pt nanostructure remained stable, whereas a significant structural change was observed for the Pt-Sn alloys. © 2017 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Marie Curie 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: L.C. acknowledges support via an EU Marie Curie Intra-European Fellowship under contract no. FP7-PEOPLE-2010-IEF-272632 . EJC and LMD acknowledge financial support from CONICET and ANPCyT (Argentina). The authors acknowledge the LMA-INA, UK Catalysis Hub, Diamond Light Source and the ALBA synchrotron light source for offering access to their instruments and expertise and for provision of beamtime (SP8071 and 2012100428). Dr. Giannantonio Cibin, Dr. Andy Dent and Dr. Stephen Parry are acknowledged for the excellent beamline support at the Diamond Light Source and Dr. Laura Simonelli at ALBA Synchrotron Light Source. The data used in this paper can be found in the Southampton University Deposit with DOI: https://doi.org/10.5258/SOTON/D0294 . Appendix A 
593 |a Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom 
593 |a Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, Padova, 35131, Italy 
593 |a INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom 
690 1 0 |a ETHANOL ELECTROOXIDATION 
690 1 0 |a IN SITU FTIRS 
690 1 0 |a IN SITU XAFS 
690 1 0 |a PT-SN NANOSTRUCTURES 
690 1 0 |a STRUCTURAL STABILITY 
690 1 0 |a BINARY ALLOYS 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a CATALYST ACTIVITY 
690 1 0 |a CATALYST SELECTIVITY 
690 1 0 |a CATALYSTS 
690 1 0 |a ELECTRONIC STRUCTURE 
690 1 0 |a ELECTROOXIDATION 
690 1 0 |a ETHANOL 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a NANOSTRUCTURES 
690 1 0 |a OXIDATION 
690 1 0 |a PLATINUM 
690 1 0 |a REACTION INTERMEDIATES 
690 1 0 |a STABILITY 
690 1 0 |a THALLIUM ALLOYS 
690 1 0 |a TIN 
690 1 0 |a TIN ALLOYS 
690 1 0 |a TIN COMPOUNDS 
690 1 0 |a X RAY ABSORPTION SPECTROSCOPY 
690 1 0 |a ELECTRONIC AND STRUCTURAL PROPERTIES 
690 1 0 |a ELECTRONIC ENVIRONMENTS 
690 1 0 |a ETHANOL ELECTRO-OXIDATION 
690 1 0 |a IN-SITU X-RAY ABSORPTION SPECTROSCOPY 
690 1 0 |a NANOPARTICLE CATALYSTS 
690 1 0 |a SITU XAFS 
690 1 0 |a SN NANOSTRUCTURES 
690 1 0 |a STRUCTURAL STABILITIES 
690 1 0 |a PLATINUM ALLOYS 
700 1 |a Mendez De Leo, L. 
700 1 |a Thompson, S.J. 
700 1 |a Price, S.W.T. 
700 1 |a Calvo, E.J. 
700 1 |a Russell, A.E. 
773 0 |d Elsevier B.V., 2018  |g v. 819  |h pp. 136-144  |x 15726657  |t Journal of Electroanalytical Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032214475&doi=10.1016%2fj.jelechem.2017.09.060&partnerID=40&md5=a2dcdb5199af4ce9c0eed8f632be17ba  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jelechem.2017.09.060  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15726657_v819_n_p136_Calvillo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15726657_v819_n_p136_Calvillo  |y Registro en la Biblioteca Digital 
961 |a paper_15726657_v819_n_p136_Calvillo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 77832