Weak completions, bornologies and rigid cohomology

Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a funct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cortiñas, G.
Otros Autores: Cuntz, J., Meyer, R., Tamme, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04731caa a22005537a 4500
001 PAPER-16873
003 AR-BaUEN
005 20230518204756.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85044612809 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JGPHE 
100 1 |a Cortiñas, G. 
245 1 0 |a Weak completions, bornologies and rigid cohomology 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Cuntz, J.; Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, Germany; email: cuntz@math.uni-muenster.de 
506 |2 openaire  |e Política editorial 
504 |a Monsky, P., Washnitzer, G., Formal cohomology. I (1968) Ann. of Math. (2), 88, pp. 181-217 
504 |a Elkik, R., Solutions d’équations à coefficients dans un anneau hensélien (1973) Ann. Sci. Éc. Norm. Supér. (4), 6, pp. 553-603. , (in French) 
504 |a Berthelot, P., Cohomologie rigide et cohomologie rigide à supports propres. Première partie, preprint; Besser, A., Syntomic regulators and p-adic integration. I. Rigid syntomic regulators (2000) Proceedings of the Conference on P-Adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998), pp. 291-334 
504 |a (2017), arXiv:1708.00357 Guillermo Cortiñas, Joachim Cuntz, Ralf Meyer, Georg Tamme, Nonarchimedean bornologies, cyclic homology and rigid cohomology; Große Klönne, E., De Rham cohomology of rigid spaces (2004) Math. Z., 247 (2), pp. 223-240 
504 |a Fulton, W., A note on weakly complete algebras (1969) Bull. Amer. Math. Soc., 75, pp. 591-593 
504 |a Berthelot, P., Finitude et pureté cohomologique en cohomologie rigide (1997) Invent. Math., 128 (2), pp. 329-377. , (in French). With an appendix in English by Aise Johan de Jong 
504 |a Große-Klönne, E., Rigid analytic spaces with overconvergent structure sheaf (2000) J. Reine Angew. Math., 519, pp. 73-95 
520 3 |a Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot. © 2018 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Deutsche Forschungsgemeinschaft, CRC 878 
536 |a Detalles de la financiación: European Research Council, CRC 1085, AdG 267 079 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, MTM2015-65764-C3-1-P, UBACyT 20021030100481BA, PICT 2013-0454 
536 |a Detalles de la financiación: The first named author was supported by Conicet and partially supported by grants UBACyT 20021030100481BA , PICT 2013-0454 , and MTM2015-65764-C3-1-P ( Feder funds ). The second named author was supported by DFG through CRC 878 and by the ERC through AdG 267 079 . The fourth named author was supported by DFG through CRC 1085 . 
593 |a Dep. Matemática-IMAS, FCEyN-UBA, Ciudad Universitaria Pab 1, 1428 Buenos Aires, Argentina 
593 |a Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, Münster, 48149, Germany 
593 |a Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstraße 3–5, Göttingen, 37073, Germany 
593 |a Universität Regensburg, Fakultät für Mathematik, Regensburg, 93040, Germany 
690 1 0 |a ALGEBRAIC GEOMETRY 
690 1 0 |a BORNOLOGICAL ALGEBRAS 
690 1 0 |a CYCLIC HOMOLOGY 
690 1 0 |a OVERCONVERGENT COMPLETIONS 
690 1 0 |a POSITIVE CHARACTERISTIC 
690 1 0 |a RIGID COHOMOLOGY 
700 1 |a Cuntz, J. 
700 1 |a Meyer, R. 
700 1 |a Tamme, G. 
773 0 |d Elsevier B.V., 2018  |g v. 129  |h pp. 192-199  |p J. Geom. Phys.  |x 03930440  |w (AR-BaUEN)CENRE-5598  |t Journal of Geometry and Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044612809&doi=10.1016%2fj.geomphys.2018.03.005&partnerID=40&md5=73cc7f49a0f84f38a396dcf8d2d7dbb5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.geomphys.2018.03.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03930440_v129_n_p192_Cortinas  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03930440_v129_n_p192_Cortinas  |y Registro en la Biblioteca Digital 
961 |a paper_03930440_v129_n_p192_Cortinas  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion