Hydrogen bond dynamics at water/Pt interfaces

We present results from computer simulations that shed light on structural and dynamic characteristics of hydrogen bonding of aqueous phases at ambient conditions, at the close vicinity of electrified metal interfaces. Our simulation strategy relied on the consideration of a Hamiltonian that explici...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Videla, P.E
Otros Autores: Ansourian, L., Laria, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17904caa a22014537a 4500
001 PAPER-16809
003 AR-BaUEN
005 20230518204750.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85042609135 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Videla, P.E. 
245 1 0 |a Hydrogen bond dynamics at water/Pt interfaces 
260 |b American Chemical Society  |c 2016 
270 1 0 |m Laria, D.; Departamento de Química Inorganica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, Argentina; email: dhlaria@cnea.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Wieckowski, A., (1999) Interfacial Electrochemistry: Theory, Experiments and Applications, , Marcel Dekker, Inc.: New York 
504 |a Levich, V.G., Kinetics of reactions with charge transfer (1970) Physical Chemistry, an Advanced Treatise, , Eyring, H., Henderson, D., Jost, W., Eds.; Academic Press: New York 
504 |a Kuznetsov, A.M., (1995) Charge Transfer in Physics, Chemistry and Biology, , Gordon and Breach, Reading, PA 
504 |a Miller, A.D., Bezel, I., Gaffney, K.J., Garrett-Roel, S., Liu, S.H., Szymanski, P., Harris, C.B., Electron solvation in two dimensions (2002) Science, 297, pp. 1163-1166 
504 |a Stahler, J., Bovensiepen, W., Meyer, M., Wolf, M., A surface science approach to ultrafast electron transfer and solvation dynamics at interfaces (2008) Chem. Soc. Rev., 37, pp. 2180-2190 
504 |a Wilhelm, F., Schmickler, W., Spohr, E., Proton transfer to charged platinum electrodes (2010) J. Phys.: Condens. Matter, 22, p. 175001 
504 |a Cao, Z., Kumar, R., Peng, Y., Voth, G.A., Proton transport under external applied voltage (2014) J. Phys. Chem. B, 118, pp. 8090-8098 
504 |a Khaselev, O., Tuner, J.A., A monolithic photovoltaic-photo-electrochemical device for hydrogen production via water splitting (1998) Science, 280, pp. 425-427 
504 |a Santos, E., Quaino, P., Schmickler, W., Theory of electrocatalysis: Hydrogen evolution and more (2012) Phys. Chem. Chem. Phys., 14, pp. 11224-11233 
504 |a Roberge, P.R., (2012) Handbook of Corrosion Engineering, , McGraw-Hill: New York 
504 |a Eliaz, N., (2012) Applications of Electrochemistry and Nano-technology in Biology and Medicine II, , Springer: New York 
504 |a Hodgson, A., Haq, S., Water adsorption and the wetting of metal surfaces (2009) Surf. Sci. Rep., 64, pp. 381-451 
504 |a Carrasco, J., Hodgson, A., Michaelides, A., A molecular perspective of water at metal interfaces (2012) Nat. Mater, 11, pp. 667-674 
504 |a Michaelides, A., Density functional theory simulations of water-metal interfaces: Waltzing waters, A novel 2D ice phase, and more (2006) Appl. Phys. A: Mater. Sci. Process., 85, pp. 415-425 
504 |a Okuyama, H., Hamada, I., Hydrogen-bond imaging and engineering with a scanning tunnelling microscope (2011) J. Phys. D: Appl. Phys., 44, p. 464004 
504 |a Kimmel, G.A., Petrik, N.G., Dohnalek, Z., Kay, B.D., Crystalline ice growth on Pt(111): Observation of a hydrophobic water monolayer (2005) Phys. Rev. Lett., 95, p. 166102 
504 |a Thurmer, K., Bartelt, N., Growth of multilayer ice films and the formation of cubic ice imaged with STM (2008) Phys. Rev. B: Condens. Matter Mater. Phys., 77, p. 195425 
504 |a Tatarkhanov, M., Ogletree, D.F., Rose, F., Mitsui, T., Fomin, E., Maier, S., Rose, M., Salmeron, M., Metal- and hydrogen-bonding competition during water adsorption on Pd(111) and Ru(0001) (2009) J. Am. Chem. Soc., 131, pp. 18425-18434 
504 |a Bjorneholm, O., Hansen, M.H., Hodgson, A., Liu, L.-M., Limmer, D.T., Michaelides, A., Pedevilla, P., Bluhm, H., Water at interfaces (2016) Chem. Rev., 116, pp. 7698-7726 
504 |a Spohr, E., Heinzinger, K., Molecular dynamics study on the water/metal interfacial potential (1998) Ber. Bunsen-Ges. Phys. Chem., 92, pp. 1358-1363 
504 |a Spohr, E., Computer simulation of the water/platinum interface (1989) J. Phys. Chem., 93, pp. 6171-6180 
504 |a Raghavan, K., Foster, K., Berkowitz, M., Comparison of the structure and dynamics of water at the Pt(111) and Pt(100) interfaces: Molecular dynamics study (1991) Chem. Phys. Lett., 177, pp. 426-432 
504 |a Xia, X., Perera, L., Essmann, U., Berkowitz, M.L., The structure of water at platinum/water interfaces. Molecular dynamics computer simulations (1995) Surf. Sci., 335, pp. 401-415 
504 |a Limmer, D.T., Willard, A.P., Madden, P., Chandler, D., Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 4200-4205 
504 |a Willard, A.P., Reed, S.K., Madden, P.A., Chandler, D.C., Water at an electrochemical interface - A simulation study (2009) Faraday Discuss., 141, pp. 423-441 
504 |a Limmer, D.T., Merlet, C., Salanne, M., Chandler, D., Madden, P.A., Van Roij, R., Rotenberg, B., Charge fluctuations in nanoscale capacitors (2013) Phys. Rev. Lett., 111, p. 106102 
504 |a Willard, A.P., Limmer, D.T., Madden, P.A., Chandler, D., Characterizing heterogeneous dynamics at hydrated electrode surfaces (2012) J. Chem. Phys., 138, p. 184702 
504 |a Limmer, D.T., Willard, A.P., Madden, P.A., Chandler, D., Water exchange at a hydrated platinum electrode is rare and collective (2015) J. Phys. Chem. C, 119, pp. 24016-24024 
504 |a Limmer, D.T., Willard, A.P., Nanoscale heterogeneity at the aqueous electrolyte-electrode interface (2015) Chem. Phys. Lett., 620, pp. 144-150 
504 |a Luzar, A., Chandler, D., Hydrogen-bond kinetics in liquid water (1996) Nature, 379, pp. 55-57 
504 |a Luzar, A., Chandler, D., Effect of environment on hydrogen bond dynamics in liquid water (1996) Phys. Rev. Lett., 76, p. 928 
504 |a Luzar, A., Resolving the hydrogen bond dynamics conundrum (2000) J. Chem. Phys., 113, p. 10663 
504 |a Starr, F.W., Nielsen, J.K., Stanley, H.E., Fast and slow dynamics of hydrogen bonds in liquid water (1999) Phys. Rev. Lett., 82, pp. 2294-2297 
504 |a Eaves, J.D., Loparo, J.J., Fecko, C.J., Roberts, S.T., Tokmakoff, A., Geissler, P.L., Hydrogen bonds in liquid water are broken only fleetingly (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 13019-13022 
504 |a Guardia, E., Laria, D., Martí, J., Hydrogen bond structure and dynamics in aqueous electrolytes at ambient and supercritical conditions (2006) J. Phys. Chem. B, 110, pp. 6332-6338 
504 |a Sciortino, F., Poole, P.H., Stanley, H.E., Havlin, S., Lifetime of the bond network and gel-like anomalies in supercooled water (1990) Phys. Rev. Lett., 64, pp. 1686-1689 
504 |a Chandra, A., Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions (2000) Phys. Rev. Lett., 85, pp. 768-771 
504 |a Kropman, M.F., Bakker, H.J., Dynamics of water molecules in aqueous solvation shells (2001) Science, 291, pp. 2118-2120 
504 |a Galamba, N., Water tetrahedrons, hydrogen-bond dynamics, and the orientational mobility of water around hydrophobic solutes (2014) J. Phys. Chem. B, 118, pp. 4169-4176 
504 |a Rosenfeld, D.E., Schmuttenmaer, C.A., Dynamics of the water hydrogen bond network at ionic, nonionic, and hydrophobic interfaces in nanopores and reverse micelles (2011) J. Phys. Chem. B, 115, pp. 1021-1031 
504 |a Jana, M., Bandyopadhyay, S., Kinetics of hydrogen bonds in aqueous solutions of cyclodextrin and its methyl-substituted forms (2011) J. Chem. Phys., 134, p. 025103 
504 |a Xu, H., Berne, B.J., Hydrogen-bond kinetics in the solvation shell of a polypeptide (2001) J. Phys. Chem. B, 105, pp. 11929-11932 
504 |a Stirnemann, G., Rossky, P.J., Hynes, J.T., Laage, D., Water reorientation, hydrogen-bond dynamics, and 2D-IR spectroscopy next to an extended hydrophobic surface (2010) Faraday Discuss., 146, pp. 263-281 
504 |a Hanasaki, I., Nakatani, A., Hydrogen bond dynamics and microscopic structure of confined water inside carbon nanotubes (2006) J. Chem. Phys., 124, p. 174714 
504 |a Han, S., Kumar, P., Stanley, H.E., Hydrogen-bond dynamics of water in a quasi-two-dimensional hydrophobic nanopore slit (2009) Phys. Rev. E, 79, p. 041202 
504 |a Paul, S., Chandra, A., Hydrogen-bond dynamics at vapour-water and metal-water interfaces (2004) Chem. Phys. Lett., 386, pp. 218-224 
504 |a Liu, P., Harder, E., Berne, B.J., Hydrogen-bond dynamics in the air-water interface (2005) J. Phys. Chem. B, 109, pp. 2949-2955 
504 |a Ni, Y., Gruenbaum, S.M., Skinner, J.L., Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 1992-1998 
504 |a Siepmann, J.I., Sprik, M., Influence of surface topology and electrostatic potential on water/electrode systems (1995) J. Chem. Phys., 102, pp. 511-524 
504 |a Martí, J., Padro, J.A., Guardia, E., Molecular dynamics calculation of the infrared spectra in liquid H2O-D2O mixtures (1994) J. Mol. Liq., 62, pp. 17-31 
504 |a Toukan, K., Rahman, A., Molecular-dynamics study of atomic motions in water (1985) Phys. Rev. B: Condens. Matter Mater. Phys., 31, pp. 2643-2648 
504 |a Chen, S.-H., Toukan, K., Loong, C.-K., Price, D.L., Teixeira, J., Hydrogen-bond spectroscopy of water by neutron scattering (1984) Phys. Rev. Lett., 53, pp. 1360-1363 
504 |a Yeh, I.-C., Berkowitz, M.L., Ewald summation for systems with slab geometry (1999) J. Chem. Phys., 111, pp. 3155-3162 
504 |a Wang, Z., Yang, Y., Olmsted, D.L., Asta, M., Laird, B.B., Evaluation of the constant potential method in simulating electric double-layer capacitors (2014) J. Chem. Phys., 141, p. 184102 
504 |a Kawata, M., Mikami, M., Rapid calculation of two-dimensional ewald summation (2001) Chem. Phys. Lett., 340, pp. 157-164 
504 |a Gingrich, T.R., Wilson, M., On the ewald summation of Gaussian charges for the simulation of metallic surfaces (2010) Chem. Phys. Lett., 500, pp. 178-183 
504 |a Nose, S., Unified formulation of the constant temperature molecular-dynamics methods (1984) J. Chem. Phys., 81, pp. 511-519 
504 |a Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions (1985) Phys. Rev. A: At., Mol., Opt. Phys., 31, pp. 1695-1697 
504 |a Laage, D., Hynes, J.T., On the molecular mechanism of water reorientation (2008) J. Phys. Chem. B, 112, pp. 14230-14242 
504 |a Laage, D., Stirnemann, G., Sterpone, F., Rey, R., Hynes, J.T., Reorientation and allied dynamics in water and aqueous solutions (2011) Annu. Rev. Phys. Chem., 62, pp. 395-416 
504 |a Martí, J., Guardia, E., Padro, J.A., Dielectric properties and infrared spectra of liquid water: Influence of the dynamic cross correlations (1994) J. Chem. Phys., 101, pp. 10883-10891 
504 |a (2012) Zaera, F. Chem. Rev., 112, pp. 2920-2986 
504 |a Iwasita, T., Xia, X., Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge (1996) J. Electroanal. Chem., 411, pp. 95-102 
504 |a Futamata, M., Luo, L., Nishihara, C., ATR-SEIR study of anions and water adsorbed on platinum electrode (2005) Surf. Sci., 590, pp. 196-211 
504 |a Osawa, M., Tsushima, M., Mogami, H., Samjeske, G., Yamakata, A., Structure of water at the electrified platinum-water interface: A study by surface-enhanced infrared absorption spectroscopy (2008) J. Phys. Chem. C, 112, pp. 4248-4256 
504 |a Ataka, K.-I., Yotsuyanagi, T., Osawa, M., Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectros-copy (1996) J. Phys. Chem., 100, pp. 10664-10672 
504 |a Ataka, K.-I., Osawa, M., In-situ infrared study of water-sulfate coadsorption on gold(111) in sulfuric acid solutions (1998) Langmuir, 14, pp. 951-959 
504 |a Hirota, L., Song, M.-B., Ito, M., In-situ infrared spectroscopy of water and electrolytes adsorbed on a Pt(111) electrode surface in acid solution. Structural changes of adsorbed water molecules upon an electrode potential (1996) Chem. Phys. Lett., 250, pp. 335-341 
504 |a Xu, H., Stern, H.A., Berne, B.J., Can water polarizability Be ignored in hydrogen bond kinetics? (2002) J. Phys. Chem. B, 106, pp. 2054-2060 
504 |a Perera, P.N., Fega, K.R., Lawrence, C., Sundstrom, E.J., Tomlinson-Phillips, J., Ben-Amotz, D., Observation of water dangling OH bonds around dissolved nonpolar groups (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 12230-12234 
504 |a Shen, Y.R., Ostroverkhov, V., Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces (2006) Chem. Rev., 106, p. 1140 
504 |a Wang, Y., Huang, X., Shepler, B.C., Braams, B.J., Bowman, J.M., Flexible, Ab initio potential, and dipole moment surfaces of water. I. Tests and applications for clusters up to 22-mer (2011) J. Chem. Phys., 134, p. 94509 
504 |a Wang, Y., Babin, V., Bowman, J.M., Paesani, F., The water hexamer-cage, prism or both: Full dimensional quantum simulations say both (2012) J. Am. Chem. Soc., 134, p. 11116 
504 |a Babin, V., Leforestier, C., Paesani, F., Development of a "First principles" water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient (2013) J. Chem. Theory Comput., 9, pp. 5395-5403 
504 |a Babin, V., Medders, G.R., Paesani, F., Development of a "First principles" water potential with flexible monomers. II. Trimer potential energy surface (2014) J. Chem. Theory Comput., 10, pp. 1599-1607 
504 |a Babin, V., Medders, G.R., Paesani, F., Development of a "First-principles" water potential with flexible monomers. III. Liquid phase properties (2014) J. Chem. Theory Comput., 10, pp. 2906-2910 
504 |a Cisneros, G.A., Wikfeldt, J.T., Ojamae, L., Lu, J., Xu, Y., Torabifard, H., Bartok, A., Paesani, F., Modeling molecular interactions in water: From pairwise to many-body potential energy functions (2016) Chem. Rev., 116, pp. 7501-7528 
504 |a Ikeshoji, T., Otani, M., Hamada, I., Okamoto, Y., Reversible redox reaction and water configuration on a positively charged platinum surface: First principles molecular dynamics simulation (2011) Phys. Chem. Chem. Phys., 13, pp. 20223-20227 
504 |a Rossmeisl, J., Nørskov, J.K., Taylor, C.D., Janik, M.J., Neurock, M., Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111) (2006) J. Phys. Chem. B, 110, pp. 21833-21839 
520 3 |a We present results from computer simulations that shed light on structural and dynamic characteristics of hydrogen bonding of aqueous phases at ambient conditions, at the close vicinity of electrified metal interfaces. Our simulation strategy relied on the consideration of a Hamiltonian that explicitly incorporates effects from polarization fluctuations at the metal surface, induced by the instantaneous local electric field promoted by the partial charges at the solvent molecules. Compared to bulk environments, our results reveal important modifications in the hydrogen bond architectures that critically depend on the atomic arrangements of the interfaces exposed to the liquid phases and the net charges allocated at the metal plates. These modifications have equally important consequences on the characteristic time scales describing the ruptures of hydrogen bonds which are operated by mechanisms which are absent in descriptions that omit atomic detail and polarization fluctuations at the metal plates. We also analyze how the latter modifications are translated into spectral shifts in the stretching bands of infrared spectra of water adlayers. © 2016 American Chemical Society.  |l eng 
593 |a Departamento de Química Inorganica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, Buenos Aires, 1428, Argentina 
593 |a Departamento de Física de la Materia Condensada, Comision Nacional de Energía Atomica, Avenida Libertador 8250, Buenos Aires, 1429, Argentina 
690 1 0 |a ELECTRIC FIELDS 
690 1 0 |a HAMILTONIANS 
690 1 0 |a METALS 
690 1 0 |a PHASE INTERFACES 
690 1 0 |a PLATES (STRUCTURAL COMPONENTS) 
690 1 0 |a POLARIZATION 
690 1 0 |a AMBIENT CONDITIONS 
690 1 0 |a ATOMIC ARRANGEMENT 
690 1 0 |a CHARACTERISTIC TIME 
690 1 0 |a DYNAMIC CHARACTERISTICS 
690 1 0 |a HYDROGEN BOND DYNAMICS 
690 1 0 |a LOCAL ELECTRIC FIELD 
690 1 0 |a POLARIZATION FLUCTUATIONS 
690 1 0 |a SIMULATION STRATEGIES 
690 1 0 |a HYDROGEN BONDS 
700 1 |a Ansourian, L. 
700 1 |a Laria, D. 
773 0 |d American Chemical Society, 2016  |g v. 120  |h pp. 27276-27284  |k n. 48  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042609135&doi=10.1021%2facs.jpcc.6b07504&partnerID=40&md5=8b282bbd00a1e727effe5722a32244b2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.jpcc.6b07504  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v120_n48_p27276_Videla  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v120_n48_p27276_Videla  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v120_n48_p27276_Videla  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 77762