Alternative uses of coddington's equations in optical design

Considering a second-order patch surrounding an axial reference object point, formulas for the second field derivatives of the wavefront aberration function, corresponding to rays both in the tangential and sagittal sections, are given. To obtain these derivatives, Coddingtons equations are used in...

Descripción completa

Detalles Bibliográficos
Autor principal: Comastri, Silvia Ana Elva
Otros Autores: Simon, J.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03321caa a22004217a 4500
001 PAPER-16669
003 AR-BaUEN
005 20241218103853.0
008 190411s2001 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85023906816 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Comastri, Silvia Ana Elva 
245 1 0 |a Alternative uses of coddington's equations in optical design 
260 |c 2001 
504 |a Smith, W.J., (1955) Modern Optical Engineering, , New York: McGraw-Hill 
504 |a Longhurst, R.S., (1973) Geometrical and Physical Optics, , London: Longman 
504 |a Born, M., Wolf, B., (1987) Principles of Optics, , London: Pergamon Press 
504 |a Cox, A., (1964) System of Optical Design, , New York: Focal 
504 |a Comastri, S.A., Simon, J.M., (1992) J. Mod. Opt., 39, p. 1543 
504 |a Herzberger, M., (1958) Modern Geometrical Optics, , New York: Interscience Publishers Inc 
504 |a Hopkins, H.H., (1965) Jpn. J. Appl. Phys., 4, p. 31. , Sup. 1 
504 |a Hopkins, H.H., (1985) Appl. Opt., 24, p. 2491 
504 |a Goodman, J.W., (1968) Introduction to Fourier Optics, , New York: McGraw-Hill 
504 |a Comastri, S.A., Simon, J.M., (1985) Optik, 69, p. 135 
504 |a Simon, J.M., Comastri, S.A., (1996) J. Mod. Opt., 43, p. 2533 
504 |a Comastri, S.A., Simon, J.M., Blendowske, R., (1999) J. Opt. Soc. Am. A, 16, p. 602 
504 |a Comastri, S.A., Simon, J.M., (2000) Optik, 111, p. 249 
506 |2 openaire  |e Política editorial 
520 3 |a Considering a second-order patch surrounding an axial reference object point, formulas for the second field derivatives of the wavefront aberration function, corresponding to rays both in the tangential and sagittal sections, are given. To obtain these derivatives, Coddingtons equations are used in a way alternative to that employed to calculate the second aperture derivatives. The wavefront aberration function for any point in the patch is written in terms of data acquired tracing tangential rays from the axial point alone. The effectiveness of the procedures is tested numerically in two photographic objectives. The plots for the field derivatives can be incorporated to the traditional ones to improve the global optimization of the optical system. © 2001 Taylor & Francis Group, LLC.  |l eng 
593 |a Laboratorio de Optica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
700 1 |a Simon, J.M. 
773 0 |d 2001  |g v. 48  |h pp. 379-404  |k n. 3  |p J. Mod. Opt.  |x 09500340  |w (AR-BaUEN)CENRE-328  |t Journal of Modern Optics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85023906816&doi=10.1080%2f09500340108230921&partnerID=40&md5=aec4ac149447821ec2d66830f9a998b3  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/09500340108230921  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09500340_v48_n3_p379_Comastri  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09500340_v48_n3_p379_Comastri  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_09500340_v48_n3_p379_Comastri  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion