Alternative uses of coddington's equations in optical design
Considering a second-order patch surrounding an axial reference object point, formulas for the second field derivatives of the wavefront aberration function, corresponding to rays both in the tangential and sagittal sections, are given. To obtain these derivatives, Coddingtons equations are used in...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
2001
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 03321caa a22004217a 4500 | ||
---|---|---|---|
001 | PAPER-16669 | ||
003 | AR-BaUEN | ||
005 | 20241218103853.0 | ||
008 | 190411s2001 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-85023906816 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Comastri, Silvia Ana Elva | |
245 | 1 | 0 | |a Alternative uses of coddington's equations in optical design |
260 | |c 2001 | ||
504 | |a Smith, W.J., (1955) Modern Optical Engineering, , New York: McGraw-Hill | ||
504 | |a Longhurst, R.S., (1973) Geometrical and Physical Optics, , London: Longman | ||
504 | |a Born, M., Wolf, B., (1987) Principles of Optics, , London: Pergamon Press | ||
504 | |a Cox, A., (1964) System of Optical Design, , New York: Focal | ||
504 | |a Comastri, S.A., Simon, J.M., (1992) J. Mod. Opt., 39, p. 1543 | ||
504 | |a Herzberger, M., (1958) Modern Geometrical Optics, , New York: Interscience Publishers Inc | ||
504 | |a Hopkins, H.H., (1965) Jpn. J. Appl. Phys., 4, p. 31. , Sup. 1 | ||
504 | |a Hopkins, H.H., (1985) Appl. Opt., 24, p. 2491 | ||
504 | |a Goodman, J.W., (1968) Introduction to Fourier Optics, , New York: McGraw-Hill | ||
504 | |a Comastri, S.A., Simon, J.M., (1985) Optik, 69, p. 135 | ||
504 | |a Simon, J.M., Comastri, S.A., (1996) J. Mod. Opt., 43, p. 2533 | ||
504 | |a Comastri, S.A., Simon, J.M., Blendowske, R., (1999) J. Opt. Soc. Am. A, 16, p. 602 | ||
504 | |a Comastri, S.A., Simon, J.M., (2000) Optik, 111, p. 249 | ||
506 | |2 openaire |e Política editorial | ||
520 | 3 | |a Considering a second-order patch surrounding an axial reference object point, formulas for the second field derivatives of the wavefront aberration function, corresponding to rays both in the tangential and sagittal sections, are given. To obtain these derivatives, Coddingtons equations are used in a way alternative to that employed to calculate the second aperture derivatives. The wavefront aberration function for any point in the patch is written in terms of data acquired tracing tangential rays from the axial point alone. The effectiveness of the procedures is tested numerically in two photographic objectives. The plots for the field derivatives can be incorporated to the traditional ones to improve the global optimization of the optical system. © 2001 Taylor & Francis Group, LLC. |l eng | |
593 | |a Laboratorio de Optica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina | ||
700 | 1 | |a Simon, J.M. | |
773 | 0 | |d 2001 |g v. 48 |h pp. 379-404 |k n. 3 |p J. Mod. Opt. |x 09500340 |w (AR-BaUEN)CENRE-328 |t Journal of Modern Optics | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85023906816&doi=10.1080%2f09500340108230921&partnerID=40&md5=aec4ac149447821ec2d66830f9a998b3 |x registro |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1080/09500340108230921 |x doi |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_09500340_v48_n3_p379_Comastri |x handle |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09500340_v48_n3_p379_Comastri |x registro |y Registro en la Biblioteca Digital |
961 | |a paper_09500340_v48_n3_p379_Comastri |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion |