Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America

The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alvarez, M.S
Otros Autores: Vera, C.S, Kiladis, G.N, Liebmann, B.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2016
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11314caa a22009017a 4500
001 PAPER-16484
003 AR-BaUEN
005 20230518204730.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84955739454 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Alvarez, M.S. 
245 1 0 |a Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America 
260 |b Springer Verlag  |c 2016 
270 1 0 |m Alvarez, M.S.; Centro de Investigaciones del Mar y la Atmósfera, (CIMA/CONICET-UBA), DCAO/FCEN, UMI-IFAECI/CNRSArgentina; email: alvarez@cima.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alvarez, M.S., Vera, C.S., Kiladis, G.N., Liebmann, B., Intraseasonal variability in South America during the cold season (2013) Clim Dyn, 42 (11-12), pp. 3253-3269 
504 |a Barlow, M., Salstein, D., Summertime influence of the Madden–Julian oscillation on daily rainfall over Mexico and Central America (2006) Geophys Res Lett, 33, p. 21708 
504 |a Barret, B.S., Carrasco, J.F., Testino, A.P., Madden–Julian oscillation (MJO) modulation of atmospheric circulation and Chilean winter precipitation (2012) J Clim, 25 (5), pp. 1678-1688 
504 |a Berbery, E.H., Nogues-Paegle, J., Intraseasonal interactions between the tropics and extratropics in the Southern Hemisphere (1993) J Atmos Sci, 50 (13), pp. 1950-1965 
504 |a Carvalho, L.M.V., Jones, C., Liebmann, B., The South Atlantic convergence zone: intensity, form, persistence, relationships with intraseasonal to interannual activity and extreme rainfall (2004) J Clim, 17, pp. 88-108 
504 |a Cerne, B., Vera, C., Influence of the intraseasonal variability on heat waves in subtropical South America (2011) Clim Dyn, 36, pp. 2265-2277 
504 |a Cerne, B., Vera, C.S., Liebmann, B., The nature of a heat wave in eastern Argentina occurring during SALLJEX (2007) Mon Weather Rev, 135, pp. 1165-1174 
504 |a De Souza, E.B., Ambrizzi, T., Modulation of the intraseasonal rainfall over tropical Brazil by the Madden–Julian oscillation (2006) Int J Clim, 26 (13), pp. 1759-1776 
504 |a Donald, A., Meinke, H., Power, B., deMaia, A.H.N., Wheeler, M.C., White, N., Stone, R.C., Ribbe, J., Near-global impact of the Madden–Julian oscillation on rainfall (2006) Geophys Res Lett, 33, p. 09704 
504 |a Gonzalez, P.L.M., Vera, C.S., Summer precipitation variability over South America on long and short intraseasonal timescales (2013) Clim Dyn 
504 |a Jones, C., Waliser, D.E., Lau, K.M., Stern, W., Global occurrences of extreme precipitation events and the Madden–Julian oscillation: observations and predictability (2004) J Clim, 17, pp. 4575-4589 
504 |a Jones, C., Gottschalck, J., Carvalho, L.M.V., Higgins, W.R., Influence of the Madden–Julian oscillation on forecasts of extreme precipitation in the contiguous United States (2011) Mon Weather Rev, 139, pp. 332-350 
504 |a Kalnay, E., The NCEP/NCAR 40-year reanalysis project (1996) Bull Am Meteorol Soc, 77 (3), pp. 437-471 
504 |a Kidson, J.W., Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP-NCAR reanalyses (1999) J Clim, 12 (9), pp. 2808-2830 
504 |a Kiladis, G.N., Mo, K.C., Karoly, D.J., Vincent, D.G., Interannual and intraseasonal variability in the Southern Hemisphere (1998) Meteorology of the Southern Hemisphere, pp. 307-336. , American Meteorological Society, Boston, M 
504 |a Kiladis, G.N., Dias, J., Straub, K.H., Wheeler, M.C., Tulich, S.N., Kikuchi, K., Weickmann, K.M., Ventrice, M.J., A comparison of OLR and circulation-based indices for tracking the MJO (2014) Mon Weather Rev, 142, pp. 1697-1715 
504 |a Lau, W.K.M., Waliser, D.E., (2012) Intraseasonal variability of the atmosphere–ocean climate system, p. 613. , Springer, Heidelber 
504 |a Liebmann, B., Allured, D., Daily precipitation grids for South America (2005) Bull Am Meteorol Soc, 86 (11), pp. 1567-1570 
504 |a Liebmann, B., Kiladis, G.N., Marengo, J.A., Ambrizzi, T., Glick, J.D., Submonthly convective variability over South America and the South Atlantic convergence zone (1999) J Clim, 12, pp. 1877-1891 
504 |a Liebmann, B., Kiladis, G.N., Vera, C.S., Saulo, A.C., Carvalho, L.M.V., Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the andes and comparison to those in the South Atlantic convergence zone (2004) J Clim, 17 (19), pp. 3829-3842 
504 |a Maharaj, E.A., Wheeler, M.C., Forecasting an index of the Madden-oscillation (2005) Int J Clim, 25, pp. 1611-1618 
504 |a Martin, E.R., Schumacher, C., Modulation of Caribbean precipitation by the Madden–Julian oscillation (2011) J Clim, 24, pp. 813-824 
504 |a Mo, K.C., Higgins, R.W., The Pacific-South American modes and tropical convection during the Southern Hemisphere winter (1998) Mon Weather Rev, 126 (6), pp. 1581-1596 
504 |a Muza, M.N., Carvalho, L.M.V., Jones, C., Liebmann, B., Intraseasonal and interannual variability of extreme dry and wet events over southeastern South America and the subtropical Atlantic during austral summer (2009) J Clim, 22 (7), pp. 1682-1699 
504 |a Naumann, G., Vargas, W.M., Joint diagnostic of the surface air temperature in southern South America and the Madden–Julian oscillation (2010) Weather Forecast, 25, pp. 1275-1280 
504 |a Nogues-Paegle, J., Mo, K.C., Alternating wet and dry conditions over South America during summer (1997) Mon Weather Rev, 125 (2), pp. 279-291 
504 |a Paegle, J.N., Byerle, L.A., Mo, K.C., Intraseasonal modulation of South American summer precipitation (2000) Mon Weather Rev, 128, pp. 837-850 
504 |a Pai, D.S., Bhate, J., Sreejith, O.P., Hatwar, H.R., Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India (2009) Clim Dyn 
504 |a Pohl, B., Camberlin, P., Influence of the Madden–Julian oscillation on East African rainfall. I: intraseasonal variability and regional dependency (2006) Q J R Meteorol Soc, 132 (621), pp. 2521-2539 
504 |a Revell, M.J., Kidson, J.W., Kiladis, G.N., Interpreting low-frequency modes of Southern Hemisphere atmospheric variability as the rotational response to divergent forcing (2001) Mon Weather Rev, 129 (9), pp. 2416-2425 
504 |a Straub, K.H., MJO initiation in the realtime multivariate MJO index (2013) J Clim, 26, pp. 1130-1151 
504 |a Vera, C., Toward a unified view of the American monsoon systems (2006) J Clim, 19, pp. 4977-5000 
504 |a Wheeler, M.C., Hendon, H.H., An all-season real-time multivariate MJO index: development of an index for monitoring and prediction (2004) Mon Weather Rev, 132, pp. 1917-1932 
504 |a Wheeler, M.C., Hendon, H.H., Cleland, S., Meinke, H., Donald, A., Impacts of the Madden–Julian oscillation on Australian rainfall and circulation (2009) J Clim, 22, pp. 1482-1498 
504 |a Zhang, L., Wang, B., Zeng, Q., Impact of the Madden–Julian oscillation on summer rainfall in southeast China (2009) J Clim 
504 |a Zhou, Y., Thompson, K.R., Lu, Y., Mapping the relationship between Northern Hemisphere winter surface air temperature and the Madden–Julian oscillation (2011) Mon Weather Rev, 139 (8), pp. 2439-2454 
504 |a Zhou, S., L’Heureux, M., Weaver, S., Kumar, A., A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States (2012) Clim Dyn, 38, pp. 1459-1471 
520 3 |a The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO. © 2015, Springer-Verlag Berlin Heidelberg.  |l eng 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 20020100100434 
536 |a Detalles de la financiación: PICT-2010-2110 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This research was supported by UBACyT 20020100100434, ANPCyT PICT-2010-2110. M.S.A. is supported by a Ph.D. grant from CONICET, Argentina. 
593 |a Centro de Investigaciones del Mar y la Atmósfera, (CIMA/CONICET-UBA), DCAO/FCEN, UMI-IFAECI/CNRS, Buenos Aires, Argentina 
593 |a Earth System Research Laboratory, NOAA, Boulder, CO, United States 
593 |a Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, United States 
690 1 0 |a IMPACTS 
690 1 0 |a MADDEN–JULIAN OSCILLATION 
690 1 0 |a PRECIPITATION 
690 1 0 |a SURFACE AIR TEMPERATURE 
651 4 |a SOUTH AMERICA 
700 1 |a Vera, C.S. 
700 1 |a Kiladis, G.N. 
700 1 |a Liebmann, B. 
773 0 |d Springer Verlag, 2016  |g v. 46  |h pp. 245-262  |k n. 1-2  |p Clim. Dyn.  |x 09307575  |w (AR-BaUEN)CENRE-567  |t Climate Dynamics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955739454&doi=10.1007%2fs00382-015-2581-6&partnerID=40&md5=a29664c56fc3634ff14fb22c1f35f158  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00382-015-2581-6  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09307575_v46_n1-2_p245_Alvarez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v46_n1-2_p245_Alvarez  |y Registro en la Biblioteca Digital 
961 |a paper_09307575_v46_n1-2_p245_Alvarez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 77437