Quandle coloring and cocycle invariants of composite knots and abelian extensions

Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality and abelian extensions. The square and granny knots, for example, can be distinguished by quandle colorings, so that a trefoil and its mirror can be distinguished by quandle coloring of composite knots...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Clark, W.E
Otros Autores: Saito, M., Vendramin, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: World Scientific Publishing Co. Pte Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08514caa a22008417a 4500
001 PAPER-16074
003 AR-BaUEN
005 20230518204657.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84963692090 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Clark, W.E. 
245 1 0 |a Quandle coloring and cocycle invariants of composite knots and abelian extensions 
260 |b World Scientific Publishing Co. Pte Ltd  |c 2016 
506 |2 openaire  |e Política editorial 
504 |a Andruskiewitsch, N., Grana, M., From racks to pointed Hopf algebras (2003) Adv. Math., 178, pp. 177-243 
504 |a Birman, J.S., Menasco, W., Studying links via closed braids IV: Composite links and split links (1990) Invent. Math., 102, pp. 115-139 
504 |a Burde, G., Zieschang, H., (2003) Knots, de Gruyter Studies in Mathematics, 2nd Edn., 5. , Walter de Gruyter & Co., Berlin 
504 |a Carter, J.S., Elhamdadi, M., Nikiforou, M.A., Saito, M., Extensions of quandles and cocycle knot invariants (2003) J. Knot Theory Ramifications, 12, pp. 725-738 
504 |a Carter, J.S., Jelsovsky, D., Kamada, S., Langford, L., Saito, M., Quandle cohomology and state-sum invariants of knotted curves and surfaces (2003) Trans. Amer. Math. Soc., 355, pp. 3947-3989 
504 |a Carter, J.S., Jelsovsky, D., Kamada, S., Saito, M., Computations of quandle cocycle invariants of knotted curves and surfaces (2001) Adv. Math., 157, pp. 36-94 
504 |a Carter, J.S., Jelsovsky, D., Kamada, S., Saito, M., Quandle homology groups, their Betti numbers, and virtual knots (2001) J Pure Appl. Algebra, 157 (2-3), pp. 135-155 
504 |a Carter, J.S., Kamada, S., Saito, M., Surfaces in 4-space (2004) Encyclopaedia of Mathematical Sciences, 142. , Springer Verlag 
504 |a Carter, J.S., Kamada, S., Saito, M., Geometric interpretations of quandle homology (2001) J. Knot Theory Ramifications, 10, pp. 345-386 
504 |a Carter, J.S., Saito, M., Satoh, S., Ribbon concordance of surface-knots via quandle cocycle invariants (2006) J. Aust. Math. Soc., 80, pp. 131-147 
504 |a Clark, W.E., Elhamdadi, M., Saito, M., Yeatman, T., Quandle colorings of knots and applications (2014) J. Knot Theory Ramifications, 23, p. 1450035. , 29 
504 |a Clark, W.E., Yeatman, T., Properties of Rig Quandles, , http://math.usf.edu/?saito/QuandleColor/characterization.pdf 
504 |a Conway, J.H., (1970) An Enumeration of Knots and Links, and Some of Their Algebraic Properties, in Computational Problems in Abstract Algebra, pp. 329-358. , ed. J. Leech ( Pergamon Press Oxford, England 
504 |a Cha, J.C., Livingston, C., (2011) Knot Info: Table of Knot Invariants, , http://www.indiana.edu/?knotinfo, May 26 
504 |a Clauwens, F.J.B.J., Small Connected Quandles, , http://front.math.ucdavis.edu/1011.2456 
504 |a Eisermann, M., Homological characterization of the unknot (2003) J. Pure Appl. Algebra, 177 (2), pp. 131-157 
504 |a Elhamdadi, M., MacQuarrie, J., Restrepo, R., Automorphism groups of quandles (2012) J. Algebra Appl., 11, p. 1250008. , 9 
504 |a Fenn, R., Rourke, C., Racks and links in codimension two (1992) J. Knot Theory Ramifications, 1, pp. 343-406 
504 |a Fenn, R., Rourke, C., Sanderson, B., Trunks and classifying spaces (1995) Appl. Categ. Structures, 3, pp. 321-356 
504 |a Hempel, J., (1984) Residual Finiteness for 3-manifolds, Combinatorial Group Theory and Topology, pp. 379-396. , Alta, Utah 
504 |a (1987) Ann. of Math. Stud., 111. , Princeton Univ. Press, Princeton, NJ 
504 |a Joyce, D., A classifying invariant of knots, the knot quandle (1982) J Pure Appl. Algebra, 23, pp. 37-65 
504 |a Litherland, L.N., Nelson, S., The Betti numbers of some finite racks (2003) J. Pure Appl. Algebra, 178, pp. 187-202 
504 |a Manturov, V., (2004) Knot Theory, , Chapman & Hall/CRC, Boca Raton, FL 
504 |a Matveev, S., Distributive groupoids in knot theory (1982) Mat. Sb. (N.S.) (Russian), 119 (161), pp. 78-88. , (160) 
504 |a Mochizuki, T., The third cohomology groups of dihedral quandles (2011) J. Knot Theory Ramifications, 20, pp. 1041-1057 
504 |a Niebrzydowski, M., Przytycki, J.H., Homology of dihedral quandles (2009) J Pure Appl. Algebra, 213, pp. 742-755 
504 |a Nosaka, T., On homotopy groups of quandle spaces and the quandle homotopy invariant of links (2011) Topology Appl., 158, pp. 996-1011 
504 |a Papakyriakopoulos, C.D., On Dehn's lemma and the asphericity of knots (1957) Ann. Math., 66 (2), pp. 1-26 
504 |a Przytycki, J.H., (1995) 3-colorings and Other Elementary Invariants of Knots Knot Theory, pp. 275-295. , Warsaw 
504 |a (1998) Polish Acad. Sci., Warsaw, 42. , Banach Center Publ 
504 |a Przytycki, J.H., From 3-moves to Lagrangian tangles and cubic skein modules (2004) Advances in Topological Quantum Field Theory, Proceedings of the NATO ARW on New Techniques in Topological Quantum Field Theory, pp. 71-125. , ed John M. Bryden 
504 |a Takasaki, M., Abstraction of symmetric transformation (1942) Tohoku Math. J. (In Japanese), 49, pp. 145-207 
504 |a Thurston, W.P., Three-dimensional manifolds, Kleinian groups and hyperbolic geometry (1982) Bull. Amer. Math. Soc. (N.S.), 6, pp. 357-381 
504 |a Vendramin, L., Rig-A GAP Package for Racks and Quandles, , http://github.com/vendramin/rig 
504 |a Vendramin, L., On the classification of quandles of low order (2012) J. Knot Theory Ramifications, 21 (9), p. 1250088 
520 3 |a Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality and abelian extensions. The square and granny knots, for example, can be distinguished by quandle colorings, so that a trefoil and its mirror can be distinguished by quandle coloring of composite knots. We investigate this and related phenomena. Quandle cocycle invariants are studied in relation to quandle coloring of the connected sum, and formulas are given for computing the cocycle invariant from the number of colorings of composite knots. Relations to corresponding abelian extensions of quandles are studied, and extensions are examined for the table of small connected quandles, called Rig quandles. Computer calculations are presented, and summaries of outputs are discussed. © 2016 World Scientific Publishing Company.  |l eng 
536 |a Detalles de la financiación: National Institutes of Health, R01GM109459 
536 |a Detalles de la financiación: Abdus Salam International Centre for Theoretical Physics, UBACyT 20020110300037, PICT-2014-1376 
536 |a Detalles de la financiación: National Institutes of Health 
536 |a Detalles de la financiación: MS was partially supported by the National Institutes of Health under Award Number R01GM109459. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of NIH. LV was partially supported by Conicet, ICTP, UBACyT 20020110300037 and PICT-2014-1376. We thank Santiago Laplagne for the computer where some calculations were performed. 
593 |a Department of Mathematics and Statistics, University of South Florida, Tampa, FL, United States 
593 |a Departamento de Mathemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ABELIAN EXTENSIONS 
690 1 0 |a COCYCLE INVARIANTS 
690 1 0 |a COLORINGS 
690 1 0 |a COMPOSITE KNOTS 
690 1 0 |a QUANDLE 
700 1 |a Saito, M. 
700 1 |a Vendramin, L. 
773 0 |d World Scientific Publishing Co. Pte Ltd, 2016  |g v. 25  |k n. 5  |p J. Knot Theory Ramifications  |x 02182165  |w (AR-BaUEN)CENRE-5634  |t Journal of Knot Theory and its Ramifications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963692090&doi=10.1142%2fS0218216516500243&partnerID=40&md5=ed8ba3193c044a123d952732c31e8f67  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1142/S0218216516500243  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02182165_v25_n5_p_Clark  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02182165_v25_n5_p_Clark  |y Registro en la Biblioteca Digital 
961 |a paper_02182165_v25_n5_p_Clark  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77027