Stability of gas measures under perturbations and discretizations

For a general class of gas models - which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles - we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of param...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fernández, R.
Otros Autores: Groisman, P., Saglietti, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: World Scientific Publishing Co. Pte Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07361caa a22007217a 4500
001 PAPER-15613
003 AR-BaUEN
005 20230518204623.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84991223130 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Fernández, R. 
245 1 0 |a Stability of gas measures under perturbations and discretizations 
260 |b World Scientific Publishing Co. Pte Ltd  |c 2016 
506 |2 openaire  |e Política editorial 
504 |a Bissacot, R., Fernandez, R., Procacci, A., On the convergence of cluster expansions for polymer gases (2010) J. Stat. Phys., 139 (4), pp. 598-617 
504 |a Bricmont, J., Kuroda, K., Lebowitz, J.L., The structure of Gibbs states and phase coexistence for nonsymmetric continuum Widom-Rowlinson models (1984) Z. Wahrsch. Verw. Gebiete, 67 (2), pp. 121-138 
504 |a Chayes, J.T., Chayes, L., Kotecky, R., The analysis of the Widom-Rowlinson model by stochastic geometric methods (1995) Comm. Math. Phys., 172 (3), pp. 551-569 
504 |a Disertori, M., Giuliani, A., The nematic phase of a system of long hard rods (2013) Comm. Math. Phys., 323 (1), pp. 143-175 
504 |a Dobrushin, R.L., Perturbation methods of the theory of Gibbsian fields, in Lectures on Probability Theory and Statistics (Saint-Flour, 1994) (1996) Lecture Notes in Math., 1648, pp. 1-66. , Springer, Berlin 
504 |a Fernandez, R., Ferrari, P.A., Garcia, N.L., Loss network representation of Peierls contours (2001) Ann. Probab., 29 (2), pp. 902-937 
504 |a Fernandez, R., Saglietti, S., A Dynamical Approach to Pirogov-Sinai Theory, in Preparation 
504 |a Ferrari, P.A., Fernandez, R., Garcia, N.L., Perfect simulation for interacting point processes, loss networks and Ising models (2002) Stochastic Process. Appl., 102 (1), pp. 63-88 
504 |a Georgii, H.-O., Haggstrom, O., Phase transition in continuum Potts models (1996) Comm. Math. Phys., 181 (2), pp. 507-528 
504 |a Georgii, H.-O., Gibbs Measures and Phase Transitions (2011) De Gruyter Studies in Mathematics, 9. , 2nd edn. Walter de Gruyter & Co., Berlin 
504 |a Georgii, H.-O., Haggstrom, O., Maes, C., The random geometry of equilibrium phases, in Phase Transitions and Critical Phenomena (2001) Phase Transit. Crit. Phenom., 18, pp. 1-142. , Academic Press, San Diego, CA 
504 |a Ghosh, A., Dhar, D., On the orientational ordering of long rods on a lattice (2007) Europhys. Lett. EPL, 78 (2). , Art. 20003 
504 |a Griffiths, R.B., Peierls proof of spontaneous magnetization in a two-dimensional Ising ferromagnet (1964) Phys. Rev., 136 (2), pp. A437-A439 
504 |a Gruber, C., Kunz, H., General properties of polymer systems (1971) Comm. Math. Phys., 22, pp. 133-161 
504 |a Kallenberg, O., (1986) Random Measures, , 4th edn. Akademie-Verlag, Berlin; Academic Press, Inc 
504 |a Kondratiev, Y., Pasurek, T., Rockner, M., Gibbs measures of continuous systems: An analytic approach (2012) Rev. Math. Phys., 24 (10), p. 1250026 
504 |a Kotecky, R., Preiss, D., Cluster expansion for abstract polymer models (1986) Comm. Math. Phys., 103 (3), pp. 491-498 
504 |a Lebowitz, J.L., Gallavotti, G., Phase transitions in binary lattice gases (2003) J. Math. Phys., 12 (7), pp. 1129-1133 
504 |a Moller, J., Waagepetersen, R.P., Statistical Inference and Simulation for Spatial Point Processes (2004) Monographs on Statistics and Applied Probability, 100. , Chapman & Hall/CRC, Boca Raton, FL 
504 |a Peierls, R., On isings model of ferromagnetism (1936) Mathematical Proceedings of the Cambridge Philosophical Society, 32, pp. 477-481. , Cambridge Univ Press 
504 |a Rebenko, A.L., Cell gas model of classical statistical systems (2013) Rev. Math. Phys., 25 (4), p. 1330006 
504 |a Ruelle, D., Existence of a phase transition in a continuous classical system (1971) Phys. Rev. Lett., 27 (16), pp. 1040-1041 
504 |a Ruelle, D., Thermodynamic Formalism (2004) The Mathematical Structures of Equilibrium Statistical Mechanics, , 2nd edn., Cambridge Mathematical Library Cambridge University Press 
504 |a Saglietti, S., Perfect Simulation of Equilibrium Measures in Diluted Models, , in preparation 
504 |a Saglietti, S., (2014) Metastability for A PDE with Blow-up and the FFG Dynamics in Diluted Models, , http://cms.dm.uba.ar/academico/carreras/doctorado/TesisSaglietti.pdf, PhD thesis Universidad de Buenos Aires 
504 |a Schuhmacher, D., Stucki, K., Gibbs point process approximation: Total variation bounds using Steins method (2014) Ann. Probab., 42 (5), pp. 1911-1951 
504 |a Sinai, Ya.G., Theory of Phase Transitions: Rigorous Results (1982) International Series in Natural Philosophy, 108. , (Pergamon Press, Oxford-Elmsford, N.Y.); Translated from the Russian by J. Fritz, A. Kramli, P. Major and D. Szasz 
504 |a Van Enter, A.C.D., Kulske, C., Opoku, A.A., Discrete approximations to vector spin models (2011) J. Phys. A, 44 (47), p. 475002 
504 |a Widom, B., Rowlinson, J.S., New model for the study of liquid-vapor phase transitions (1970) J. Chem. Phys., 52 (4), pp. 1670-1684 
520 3 |a For a general class of gas models - which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles - we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions. © 2016 World Scientific Publishing Company.  |l eng 
593 |a Department of Mathematics, Utrecht University, Netherlands 
593 |a IMAS-CONICET, Departamento de Matemática, FCEN-UBA, Argentina 
593 |a NYU-ECNU, Institute of Mathematical Sciences, NYU, Shanghai, China 
593 |a Departamento de Matemática, Pontificia Universidad Católica, Chile 
690 1 0 |a DISCRETIZATION 
690 1 0 |a GIBBS MEASURES 
690 1 0 |a PERFECT SIMULATION 
690 1 0 |a POINT PROCESSES 
700 1 |a Groisman, P. 
700 1 |a Saglietti, S. 
773 0 |d World Scientific Publishing Co. Pte Ltd, 2016  |g v. 28  |k n. 10  |p Rev. Math. Phys.  |x 0129055X  |w (AR-BaUEN)CENRE-6690  |t Reviews in Mathematical Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991223130&doi=10.1142%2fS0129055X16500227&partnerID=40&md5=dbe1c3bfa3a096e1f688238731119499  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1142/S0129055X16500227  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0129055X_v28_n10_p_Fernandez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0129055X_v28_n10_p_Fernandez  |y Registro en la Biblioteca Digital 
961 |a paper_0129055X_v28_n10_p_Fernandez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76566