Stability of gas measures under perturbations and discretizations
For a general class of gas models - which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles - we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of param...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
World Scientific Publishing Co. Pte Ltd
2016
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 07361caa a22007217a 4500 | ||
---|---|---|---|
001 | PAPER-15613 | ||
003 | AR-BaUEN | ||
005 | 20230518204623.0 | ||
008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-84991223130 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Fernández, R. | |
245 | 1 | 0 | |a Stability of gas measures under perturbations and discretizations |
260 | |b World Scientific Publishing Co. Pte Ltd |c 2016 | ||
506 | |2 openaire |e Política editorial | ||
504 | |a Bissacot, R., Fernandez, R., Procacci, A., On the convergence of cluster expansions for polymer gases (2010) J. Stat. Phys., 139 (4), pp. 598-617 | ||
504 | |a Bricmont, J., Kuroda, K., Lebowitz, J.L., The structure of Gibbs states and phase coexistence for nonsymmetric continuum Widom-Rowlinson models (1984) Z. Wahrsch. Verw. Gebiete, 67 (2), pp. 121-138 | ||
504 | |a Chayes, J.T., Chayes, L., Kotecky, R., The analysis of the Widom-Rowlinson model by stochastic geometric methods (1995) Comm. Math. Phys., 172 (3), pp. 551-569 | ||
504 | |a Disertori, M., Giuliani, A., The nematic phase of a system of long hard rods (2013) Comm. Math. Phys., 323 (1), pp. 143-175 | ||
504 | |a Dobrushin, R.L., Perturbation methods of the theory of Gibbsian fields, in Lectures on Probability Theory and Statistics (Saint-Flour, 1994) (1996) Lecture Notes in Math., 1648, pp. 1-66. , Springer, Berlin | ||
504 | |a Fernandez, R., Ferrari, P.A., Garcia, N.L., Loss network representation of Peierls contours (2001) Ann. Probab., 29 (2), pp. 902-937 | ||
504 | |a Fernandez, R., Saglietti, S., A Dynamical Approach to Pirogov-Sinai Theory, in Preparation | ||
504 | |a Ferrari, P.A., Fernandez, R., Garcia, N.L., Perfect simulation for interacting point processes, loss networks and Ising models (2002) Stochastic Process. Appl., 102 (1), pp. 63-88 | ||
504 | |a Georgii, H.-O., Haggstrom, O., Phase transition in continuum Potts models (1996) Comm. Math. Phys., 181 (2), pp. 507-528 | ||
504 | |a Georgii, H.-O., Gibbs Measures and Phase Transitions (2011) De Gruyter Studies in Mathematics, 9. , 2nd edn. Walter de Gruyter & Co., Berlin | ||
504 | |a Georgii, H.-O., Haggstrom, O., Maes, C., The random geometry of equilibrium phases, in Phase Transitions and Critical Phenomena (2001) Phase Transit. Crit. Phenom., 18, pp. 1-142. , Academic Press, San Diego, CA | ||
504 | |a Ghosh, A., Dhar, D., On the orientational ordering of long rods on a lattice (2007) Europhys. Lett. EPL, 78 (2). , Art. 20003 | ||
504 | |a Griffiths, R.B., Peierls proof of spontaneous magnetization in a two-dimensional Ising ferromagnet (1964) Phys. Rev., 136 (2), pp. A437-A439 | ||
504 | |a Gruber, C., Kunz, H., General properties of polymer systems (1971) Comm. Math. Phys., 22, pp. 133-161 | ||
504 | |a Kallenberg, O., (1986) Random Measures, , 4th edn. Akademie-Verlag, Berlin; Academic Press, Inc | ||
504 | |a Kondratiev, Y., Pasurek, T., Rockner, M., Gibbs measures of continuous systems: An analytic approach (2012) Rev. Math. Phys., 24 (10), p. 1250026 | ||
504 | |a Kotecky, R., Preiss, D., Cluster expansion for abstract polymer models (1986) Comm. Math. Phys., 103 (3), pp. 491-498 | ||
504 | |a Lebowitz, J.L., Gallavotti, G., Phase transitions in binary lattice gases (2003) J. Math. Phys., 12 (7), pp. 1129-1133 | ||
504 | |a Moller, J., Waagepetersen, R.P., Statistical Inference and Simulation for Spatial Point Processes (2004) Monographs on Statistics and Applied Probability, 100. , Chapman & Hall/CRC, Boca Raton, FL | ||
504 | |a Peierls, R., On isings model of ferromagnetism (1936) Mathematical Proceedings of the Cambridge Philosophical Society, 32, pp. 477-481. , Cambridge Univ Press | ||
504 | |a Rebenko, A.L., Cell gas model of classical statistical systems (2013) Rev. Math. Phys., 25 (4), p. 1330006 | ||
504 | |a Ruelle, D., Existence of a phase transition in a continuous classical system (1971) Phys. Rev. Lett., 27 (16), pp. 1040-1041 | ||
504 | |a Ruelle, D., Thermodynamic Formalism (2004) The Mathematical Structures of Equilibrium Statistical Mechanics, , 2nd edn., Cambridge Mathematical Library Cambridge University Press | ||
504 | |a Saglietti, S., Perfect Simulation of Equilibrium Measures in Diluted Models, , in preparation | ||
504 | |a Saglietti, S., (2014) Metastability for A PDE with Blow-up and the FFG Dynamics in Diluted Models, , http://cms.dm.uba.ar/academico/carreras/doctorado/TesisSaglietti.pdf, PhD thesis Universidad de Buenos Aires | ||
504 | |a Schuhmacher, D., Stucki, K., Gibbs point process approximation: Total variation bounds using Steins method (2014) Ann. Probab., 42 (5), pp. 1911-1951 | ||
504 | |a Sinai, Ya.G., Theory of Phase Transitions: Rigorous Results (1982) International Series in Natural Philosophy, 108. , (Pergamon Press, Oxford-Elmsford, N.Y.); Translated from the Russian by J. Fritz, A. Kramli, P. Major and D. Szasz | ||
504 | |a Van Enter, A.C.D., Kulske, C., Opoku, A.A., Discrete approximations to vector spin models (2011) J. Phys. A, 44 (47), p. 475002 | ||
504 | |a Widom, B., Rowlinson, J.S., New model for the study of liquid-vapor phase transitions (1970) J. Chem. Phys., 52 (4), pp. 1670-1684 | ||
520 | 3 | |a For a general class of gas models - which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles - we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions. © 2016 World Scientific Publishing Company. |l eng | |
593 | |a Department of Mathematics, Utrecht University, Netherlands | ||
593 | |a IMAS-CONICET, Departamento de Matemática, FCEN-UBA, Argentina | ||
593 | |a NYU-ECNU, Institute of Mathematical Sciences, NYU, Shanghai, China | ||
593 | |a Departamento de Matemática, Pontificia Universidad Católica, Chile | ||
690 | 1 | 0 | |a DISCRETIZATION |
690 | 1 | 0 | |a GIBBS MEASURES |
690 | 1 | 0 | |a PERFECT SIMULATION |
690 | 1 | 0 | |a POINT PROCESSES |
700 | 1 | |a Groisman, P. | |
700 | 1 | |a Saglietti, S. | |
773 | 0 | |d World Scientific Publishing Co. Pte Ltd, 2016 |g v. 28 |k n. 10 |p Rev. Math. Phys. |x 0129055X |w (AR-BaUEN)CENRE-6690 |t Reviews in Mathematical Physics | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991223130&doi=10.1142%2fS0129055X16500227&partnerID=40&md5=dbe1c3bfa3a096e1f688238731119499 |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1142/S0129055X16500227 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_0129055X_v28_n10_p_Fernandez |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0129055X_v28_n10_p_Fernandez |y Registro en la Biblioteca Digital |
961 | |a paper_0129055X_v28_n10_p_Fernandez |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 76566 |