Link and knot invariants from non-abelian Yang-Baxter 2-cocycles

We define a knot/link invariant using set theoretical solutions (X,σ) of the Yang-Baxter equation and non-commutative 2-cocycles. We also define, for a given (X,σ), a universal group Unc(X) governing all 2-cocycles in X, and we exhibit examples of computations. © 2016 World Scientific Publishing Com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Farinati, M.A
Otros Autores: García Galofre, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: World Scientific Publishing Co. Pte Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03539caa a22004217a 4500
001 PAPER-15573
003 AR-BaUEN
005 20230518204620.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84990239797 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Farinati, M.A. 
245 1 0 |a Link and knot invariants from non-abelian Yang-Baxter 2-cocycles 
260 |b World Scientific Publishing Co. Pte Ltd  |c 2016 
270 1 0 |m García Galofre, J.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: jgarciag@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Andruskiewitsch, N., Graña, M., From racks to pointed Hopf algebras (2003) Adv. Math, 178 (2), pp. 177-243 
504 |a Bartolomew, A., Fenn, R., Biquandles of small size and some invariants of virtual and Welded Knots (2011) J. Knot Theory Ramifications, 20 (7), pp. 943-954. , http://www.layer8.co.uk/maths/biquandles/index.htm 
504 |a Carter, J.S., El Hamdadi, M., Graña, M., Saito, M., Cocycle knot invariants from quandle modules and generalized quandle homology (2005) Osaka J. Math, 42 (3), pp. 499-541 
504 |a Carter, J.S., Elhamdadi, M., Saito, M., Homology theory for the set-theoretic Yang- Baxter equation and knot invariants from generalizations of quandles (2004) Fund. Math, 184, pp. 31-54 
504 |a Farinati, M., Galofre, J.G., http://mate.dm.uba.ar/-mfarinat/papers/GAP; (2015) The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.7.8, , http://www.gap-system.org 
504 |a Graña, M., Indecomposable racks of order p2 (2004) Beitr. Algebra Geom, 45 (2), pp. 665-676 
504 |a Lu, J., Yan, M., Zhu, Y., On set-theoretical Yang-Baxter equation (2000) Duke Math. J, 104, pp. 1-18 
504 |a Soloviev, A., Non-unitary set-theoretical solutions to the quantum Yang-Baxter equation (2000) Math. Res. Lett, 7 (5-6), pp. 577-596 
520 3 |a We define a knot/link invariant using set theoretical solutions (X,σ) of the Yang-Baxter equation and non-commutative 2-cocycles. We also define, for a given (X,σ), a universal group Unc(X) governing all 2-cocycles in X, and we exhibit examples of computations. © 2016 World Scientific Publishing Company.  |l eng 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IMAS. CONICET, Argentina 
690 1 0 |a KNOT AND LINK INVARIANTS 
690 1 0 |a NON-ABELIAN COCYCLES 
700 1 |a García Galofre, J. 
773 0 |d World Scientific Publishing Co. Pte Ltd, 2016  |g v. 25  |k n. 13  |p J. Knot Theory Ramifications  |x 02182165  |w (AR-BaUEN)CENRE-5634  |t Journal of Knot Theory and its Ramifications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990239797&doi=10.1142%2fS021821651650070X&partnerID=40&md5=66bc58f64809caa0aeb21cd53f7ec94c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1142/S021821651650070X  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02182165_v25_n13_p_Farinati  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02182165_v25_n13_p_Farinati  |y Registro en la Biblioteca Digital 
961 |a paper_02182165_v25_n13_p_Farinati  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76526