Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine d2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance

We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), wh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Luque, G.M
Otros Autores: Lopez-Vicchi, F., María Ornstein, A., Brie, B., De Winne, C., Fiore, E., Perez-Millan, M.I, Mazzolini, G., Rubinstein, M., Becu-Villalobos, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Physiological Society 2016
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 26725caa a22026897a 4500
001 PAPER-15502
003 AR-BaUEN
005 20230518204614.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85006293235 
024 7 |2 cas  |a adiponectin, 283182-39-8; cholesterol, 57-88-5; cyclophilin, 126043-36-5; fatty acid synthase, 9045-77-6; glucokinase, 37237-53-9, 9001-36-9; glucose, 50-99-7, 84778-64-3; glucose 6 phosphate, 56-73-5; insulin, 9004-10-8; lipoprotein lipase, 83137-80-8, 9004-02-8; prolactin, 12585-34-1, 50647-00-2, 9002-62-4; protein, 67254-75-5; triacylglycerol lipase, 9001-62-1; Glucose; Insulin; Mlxipl protein, mouse; Nuclear Proteins; Receptors, Dopamine D2; Receptors, Prolactin; Srebf1 protein, mouse; Sterol Regulatory Element Binding Protein 1; Transcription Factors 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a AJPMD 
100 1 |a Luque, G.M. 
245 1 0 |a Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine d2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance 
260 |b American Physiological Society  |c 2016 
270 1 0 |m Becu-Villalobos, D.Vuelta de Obligado 2490, Argentina; email: dbecu@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Al-Hasani, H., Joost, H.G., Nutrition-/diet-induced changes in gene expression in white adipose tissue (2005) Best Pract Res Clin Endocrinol Metab, 19, pp. 589-603 
504 |a Asai-Sato, M., Okamoto, M., Endo, M., Yoshida, H., Murase, M., Ikeda, M., Sakakibara, H., Hirahara, F., Hypoadiponectinemia in lean lactating women: Prolactin inhibits adiponectin secretion from human adipocytes (2006) Endocr J, 53, pp. 555-562 
504 |a Auffret, J., Viengchareun, S., Carré, N., Denis, R.G., Magnan, C., Marie, P.Y., Muscat, A., Binart, N., Beige differentiation of adipose depots in mice lacking prolactin receptor protects against high-fat-dietinduced obesity (2012) FASEB J, 26, pp. 3728-3737 
504 |a Bacon, R.L., Kirkman, H., The response of the testis of the hamster to chronic treatment with different estrogens (1955) Endocrinology, 57, pp. 255-271 
504 |a Bello, E.P., Mateo, Y., Gelman, D.M., Noaín, D., Shin, J.H., Low, M.J., Alvarez, V.A., Rubinstein, M., Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors (2011) Nat Neurosci, 14, pp. 1033-1038 
504 |a Bibunstruct; Benhamed, F., Denechaud, P.D., Lemoine, M., Robichon, C., Moldes, M., Bertrand-Michel, J., Ratziu, V., Postic, C., The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans (2012) J Clin Invest, 122, pp. 2176-2194 
504 |a Bole-Feysot, C., Goffin, V., Edery, M., Binart, N., Kelly, P.A., Prolactin (PRL) and its receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice (1998) Endocr Rev, 19, pp. 225-268 
504 |a Brandebourg, T.D., Bown, J.L., Ben-Jonathan, N., Prolactin upregulates its receptors and inhibits lipolysis and leptin release in male rat adipose tissue (2007) Biochem Biophys Res Commun, 357, pp. 408-413 
504 |a Brelje, T.C., Stout, L.E., Bhagroo, N.V., Sorenson, R.L., Distinctive roles for prolactin and growth hormone in the activation of signal transducer and activator of transcription 5 in pancreatic islets of langerhans (2004) Endocrinology, 145, pp. 4162-4175 
504 |a Buck, K., Vanek, M., Groner, B., Ball, R.K., Multiple forms of prolactin receptor messenger ribonucleic acid are specifically expressed and regulated in murine tissues and the mammary cell line HC11 (1992) Endocrinology, 130, pp. 1108-1114 
504 |a Carobbio, S., Hagen, R.M., Lelliott, C.J., Slawik, M., Medina-Gomez, G., Tan, C.Y., Sicard, A., Vidal-Puig, A., Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity (2013) Diabetes, 62, pp. 3697-3708 
504 |a Clarke, D.L., Linzer, D.I., Changes in prolactin receptor expression during pregnancy in the mouse ovary (1993) Endocrinology, 133, pp. 224-232 
504 |a Davis, J.A., Linzer, D.I., Expression of multiple forms of the prolactin receptor in mouse liver (1989) Mol Endocrinol, 3, pp. 674-680 
504 |a Dentin, R., Pégorier, J.P., Benhamed, F., Foufelle, F., Ferré, P., Fauveau, V., Magnuson, M.A., Postic, C., Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression (2004) J Biol Chem, 279, pp. 20314-20326 
504 |a Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., Raptis SA. Insulin effects in muscle and adipose tissue (2011) Diabetes Res Clin Pract, 93, pp. S52-S59 
504 |a Filhoulaud, G., Guilmeau, S., Dentin, R., Girard, J., Postic, C., Novel insights into ChREBP regulation and function (2013) Trends Endocrinol Metab, 24, pp. 257-268 
504 |a Fiore, E.J., Bayo, J.M., Garcia, M.G., Malvicini, M., Lloyd, R., Piccioni, F., Rizzo, M., Mazzolini, G., Mesenchymal stromal cells engineered to produce IGF-I by recombinant adenovirus ameliorate liver fibrosis in mice (2015) Stem Cells Dev, 24, pp. 791-801 
504 |a Fleenor, D., Arumugam, R., Freemark, M., Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I (2006) Horm Res, 66, pp. 101-110 
504 |a Flint, D.J., Binart, N., Boumard, S., Kopchick, J.J., Kelly, P., Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: Site-specific effects upon proliferation, differentiation and hormone sensitivity (2006) J Endocrinol, 191, pp. 101-111 
504 |a Flint, D.J., Binart, N., Kopchick, J., Kelly, P., Effects of growth hormone and prolactin on adipose tissue development and function (2003) Pituitary, 6, pp. 97-102 
504 |a Foretz, M., Guichard, C., Ferré, P., Foufelle, F., Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes (1999) Proc Natl Acad Sci USA, 96, pp. 12737-12742 
504 |a Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., Le Lièpvre, X., Berthelier-Lubrano, C., Foufelle, F., ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose (1999) Mol Cell Biol, 19, pp. 3760-3768 
504 |a Freemark, M., Avril, I., Fleenor, D., Driscoll, P., Petro, A., Opara, E., Kendall, W., Kelly, P.A., Targeted deletion of the PRL receptor: Effects on islet development, insulin production, and glucose tolerance (2002) Endocrinology, 143, pp. 1378-1385 
504 |a Galsgaard, E.D., Nielsen, J.H., Møldrup, A., Regulation of prolactin receptor (PRLR) gene expression in insulin-producing cells. Prolactin and growth hormone activate one of the rat prlr gene promoters via STAT5a and STAT5b (1999) J Biol Chem, 274, pp. 18686-18692 
504 |a García-Tornadú, I., Díaz-Torga, G., Risso, G.S., Silveyra, P., Cataldi, N., Ramirez, M.C., Low, M.J., Becu-Villalobos, D., Hypothalamic orexin, OX1, alphaMSH, NPY and MCRs expression in dopaminergic D2R knockout mice (2009) Neuropeptides, 43, pp. 267-274 
504 |a García-Tornadú, I., Ornstein, A.M., Chamson-Reig, A., Wheeler, M.B., Hill, D.J., Arany, E., Rubinstein, M., Becu-Villalobos, D., Disruption of the dopamine d2 receptor impairs insulin secretion and causes glucose intolerance (2010) Endocrinology, 151, pp. 1441-1450 
504 |a Grattan, D.R., 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo- prolactin axis (2015) J Endocrinol, 226, pp. T101-T122 
504 |a Greenman, Y., Tordjman, K., Stern, N., Increased body weight associated with prolactin secreting pituitary adenomas: Weight loss with normalization of prolactin levels (1998) Clin Endocrinol (Oxf), 48, pp. 547-553 
504 |a Gualillo, O., Lago, F., García, M., Menéndez, C., Señarís, R., Casanueva, F.F., Diéguez, C., Prolactin stimulates leptin secretion by rat white adipose tissue (1999) Endocrinology, 140, pp. 5149-5153 
504 |a Hagiwara, A., Cornu, M., Cybulski, N., Polak, P., Betz, C., Trapani, F., Terracciano, L., Hall, M.N., Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c (2012) Cell Metab, 15, pp. 725-738 
504 |a Hartwell, H.J., Petrosky, K.Y., Fox, J.G., Horseman, N.D., Rogers, A.B., Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice (2014) Proc Natl Acad Sci USA, 111, pp. 11455-11460 
504 |a Herman, M.A., Peroni, O.D., Villoria, J., Schön, M.R., Abumrad, N.A., Blüher, M., Klein, S., Kahn, B.B., A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism (2012) Nature, 484, pp. 333-338 
504 |a Horseman, N.D., Gregerson, K.A., Prolactin actions (2013) J Mol Endocrinol, 52, pp. RR95-R106 
504 |a Horton, J.D., Bashmakov, Y., Shimomura, I., Shimano, H., Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice (1998) Proc Natl Acad Sci USA, 95, pp. 5987-5992 
504 |a Huang, C., Snider, F., Cross, J.C., Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy (2009) Endocrinology, 150, pp. 1618-1626 
504 |a Hurtado Del Pozo, C., Vesperinas-García, G., Rubio, M.Á., Corripio-Sánchez, R., Torres-García, A.J., Obregon, M.J., Calvo, R.M., ChREBP expression in the liver, adipose tissue and differentiated preadipocytes in human obesity (2011) Biochim Biophys Acta, 1811, pp. 1194-1200 
504 |a Iizuka, K., Recent progress on the role of ChREBP in glucose and lipid metabolism (2013) Endocr J, 60, pp. 543-555 
504 |a Iizuka, K., Bruick, R.K., Liang, G., Horton, J.D., Uyeda, K., Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis (2004) Proc Natl Acad Sci USA, 101, pp. 7281-7286 
504 |a Iizuka, K., Horikawa, Y., ChREBP: A glucose-activated transcription factor involved in the development of metabolic syndrome (2008) Endocr J, 55, pp. 617-624 
504 |a Kavarthapu, R., Tsai Morris, C.H., Dufau, M.L., Prolactin induces upregulation of its cognate receptor in breast cancer cells via transcriptional activation of its generic promoter by cross-talk between ER and STAT5 (2014) Oncotarget, 5, pp. 9079-9091 
504 |a Lapensee, C.R., Horseman, N.D., Tso, P., Brandebourg, T.D., Hugo, E.R., Ben-Jonathan, N., The prolactin-deficient mouse has an unaltered metabolic phenotype (2006) Endocrinology, 147, pp. 4638-4645 
504 |a Lebaron, M.J., Ahonen, T.J., Nevalainen, M.T., Rui, H., In vivo responsebased identification of direct hormone target cell populations using highdensity tissue arrays (2007) Endocrinology, 148, pp. 989-1008 
504 |a Letexier, D., Peroni, O., Pinteur, C., Beylot, M., In vivo expression of carbohydrate responsive element binding protein in lean and obese rats (2005) Diabetes Metab, 31, pp. 558-566 
504 |a Letexier, D., Pinteur, C., Large, V., Fréring, V., Beylot, M., Comparison of the expression and activity of the lipogenic pathway in human and rat adipose tissue (2003) J Lipid Res, 44, pp. 2127-2134 
504 |a Ling, C., Hellgren, G., Gebre-Medhin, M., Dillner, K., Wennbo, H., Carlsson, B., Billig, H., Prolactin (PRL) receptor gene expression in mouse adipose tissue: Increases during lactation and in PRL-transgenic mice (2000) Endocrinology, 141, pp. 3564-3572 
504 |a Ling, C., Svensson, L., Odén, B., Weijdegård, B., Edén, B., Edén, S., Billig, H., Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue (2003) J Clin Endocrinol Metab, 88, pp. 1804-1808 
504 |a Luque, G.M., Perez-Millán, M.I., Ornstein, A.M., Cristina, C., Becu-Villalobos, D., Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas (2011) J Pharmacol Exp Ther, 337, pp. 766-774 
504 |a Matsumoto, M., Ogawa, W., Teshigawara, K., Inoue, H., Miyake, K., Sakaue, H., Kasuga, M., Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase signaling pathway in insulin-induced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes (2002) Diabetes, 51, pp. 1672-1680 
504 |a Meyre, D., Delplanque, J., Chèvre, J.C., Lecoeur, C., Lobbens, S., Gallina, S., Durand, E., Froguel, P., Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations (2009) Nat Genet, 41, pp. 157-159 
504 |a Nadler, S.T., Stoehr, J.P., Schueler, K.L., Tanimoto, G., Yandell, B.S., Attie, A.D., The expression of adipogenic genes is decreased in obesity and diabetes mellitus (2000) Proc Natl Acad Sci USA, 97, pp. 11371-11376 
504 |a Nagano, M., Kelly, P.A., Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction (1994) J Biol Chem, 269, pp. 13337-13345 
504 |a Nanbu-Wakao, R., Fujitani, Y., Masuho, Y., Muramatu, M., Wakao, H., Prolactin enhances CCAAT enhancer-binding protein-beta (C/EBP beta) and peroxisome proliferator-activated receptor gamma (PPAR gamma) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells (2000) Mol Endocrinol, 14, pp. 307-316 
504 |a Nilsson, L., Olsson, A.H., Isomaa, B., Groop, L., Billig, H., Ling, C., A common variant near the PRL gene is associated with increased adiposity in males (2011) Mol Genet Metab, 102, pp. 78-81 
504 |a Nilsson, L.A., Roepstorff, C., Kiens, B., Billig, H., Ling, C., Prolactin suppresses malonyl-CoA concentration in human adipose tissue (2009) Horm Metab Res, 41, pp. 747-751 
504 |a Noaín, D., Pérez-Millán, M.I., Bello, E.P., Luque, G.M., Casas Cordero, R., Gelman, D.M., Peper, M., Rubinstein, M., Central dopamine D2 receptors regulate growth-hormonedependent body growth and pheromone signaling to conspecific males (2013) J Neurosci, 33, pp. 5834-5842 
504 |a Nogalska, A., Sucajtys-Szulc, E., Swierczynski, J., Leptin decreases lipogenic enzyme gene expression through modification of SREBP-1c gene expression in white adipose tissue of aging rats (2005) Metabolism, 54, pp. 1041-1047 
504 |a Ouhtit, A., Kelly, P.A., Morel, G., Visualization of gene expression of short and long forms of prolactin receptor in rat digestive tissues (1994) Am J Physiol, 266, pp. G807-G815 
504 |a Pala, N.A., Laway, B.A., Misgar, R.A., Dar, R.A., Metabolic abnormalities in patients with prolactinoma: Response to treatment with cabergoline (2015) Diabetol Metab Syndr, 7, 99p 
504 |a Perez Millan, M.I., Luque, G.M., Ramirez, M.C., Noain, D., Ornstein, A.M., Rubinstein, M., Becu-Villalobos, D., Selective disruption of dopamine D2 receptors in pituitary lactotropes increases body weight and adiposity in female mice (2014) Endocrinology, 155, pp. 829-839 
504 |a Petryk, A., Fleenor, D., Driscoll, P., Freemark, M., Prolactin induction of insulin gene expression: The roles of glucose and glucose transporter-2 (2000) J Endocrinol, 164, pp. 277-286 
504 |a Pi, X.J., Grattan, D.R., Increased expression of both short and long forms of prolactin receptor mRNA in hypothalamic nuclei of lactating rats (1999) J Mol Endocrinol, 23, pp. 13-22 
504 |a Ramirez, M.C., Ornstein, A.M., Luque, G.M., Perez Millan, M.I., Garcia-Tornadu, I., Rubinstein, M., Becu-Villalobos, D., Pituitary and brain dopamine D2 receptors regulate liver gene sexual dimorphism (2015) Endocrinology, 156, pp. 1040-1051 
504 |a Rui, L., Energy metabolism in the liver (2014) Compr Physiol, 4, pp. 177-197 
504 |a Saltiel, A.R., Kahn, C.R., Insulin signalling and the regulation of glucose and lipid metabolism (2001) Nature, 414, pp. 799-806 
504 |a Sauvé, D., Woodside, B., Neuroanatomical specificity of prolactin-induced hyperphagia in virgin female rats (2000) Brain Res, 868, pp. 306-314 
504 |a Serri, O., Li, L., Mamputu, J.C., Beauchamp, M.C., Maingrette, F., Renier, G., The influences of hyperprolactinemia and obesity on cardiovascular risk markers: Effects of cabergoline therapy (2006) Clin Endocrinol (Oxf), 64, pp. 366-370 
504 |a Shimano, H., Shimomura, I., Hammer, R.E., Herz, J., Goldstein, J.L., Brown, M.S., Horton, J.D., Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene (1997) J Clin Invest, 100, pp. 2115-2124 
504 |a Sorenson, R.L., Brelje, T.C., Hegre, O.D., Marshall, S., Anaya, P., Sheridan, J.D., Prolactin (In vitro) decreases the glucose stimulation threshold, enhances insulin secretion, and increases dye coupling among islet B cells (1987) Endocrinology, 121, pp. 1447-1453 
504 |a Soukas, A., Socci, N.D., Saatkamp, B.D., Novelli, S., Friedman, J.M., Distinct transcriptional profiles of adipogenesis in vivo and in vitro (2001) J Biol Chem, 276, pp. 34167-34174 
504 |a Strain, A.J., Ingleton, P.M., Growth hormone- and prolactin-induced release of insulin-like growth factor by isolated rat hepatocytes (1990) Biochem Soc Trans, 18, p. 1206 
504 |a Topping, D.L., Mayes, P.A., The immediate effects of insulin and fructose on the metabolism of the perfused liver. Changes in lipoprotein secretion, fatty acid oxidation and esterification, lipogenesis and carbohydrate metabolism (1972) Biochem J, 126, pp. 295-311 
504 |a Uyeda, K., Repa, J.J., Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis (2006) Cell Metab, 4, pp. 107-110 
504 |a Viengchareun, S., Bouzinba-Segard, H., Laigneau, J.P., Zennaro, M.C., Kelly, P.A., Bado, A., Lombès, M., Binart, N., Prolactin potentiates insulinstimulated leptin expression and release from differentiated brown adipocytes (2004) J Mol Endocrinol, 33, pp. 679-691 
504 |a Wang, Y., Viscarra, J., Kim, S.J., Sul, H.S., Transcriptional regulation of hepatic lipogenesis (2015) Nat Rev Mol Cell Biol, 16, pp. 678-689 
504 |a White, U.A., Stephens, J.M., Transcriptional factors that promote formation of white adipose tissue (2010) Mol Cell Endocrinol, 318, pp. 10-14 
504 |a Wittmann, G., Liposits, Z., Lechan, R.M., Fekete, C., Medullary adrenergic neurons contribute to the neuropeptide Y-ergic innervation of hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons in the rat (2002) Neurosci Lett, 324, pp. 69-73 
504 |a Yahagi, N., Shimano, H., Hasty, A.H., Matsuzaka, T., Ide, T., Yoshikawa, T., Amemiya-Kudo, M., Yamada, N., Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice (2002) J Biol Chem, 277, pp. 19353-19357 
504 |a Yamashita, H., Takenoshita, M., Sakurai, M., Bruick, R.K., Henzel, W.J., Shillinglaw, W., Arnot, D., Uyeda, K., A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver (2001) Proc Natl Acad Sci USA, 98, pp. 9116-9121 
504 |a Yavuz, D., Deyneli, O., Akpinar, I., Yildiz, E., Gözü, H., Sezgin, O., Haklar, G., Akalin, S., Endothelial function, insulin sensitivity and inflammatory markers in hyperprolactinemic pre-menopausal women (2003) Eur J Endocrinol, 149, pp. 187-193 
520 3 |a We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage. © 2016 the American Physiological Society.  |l eng 
593 |a Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT-CONICET), Universidad Austral, Buenos Aires, Argentina 
593 |a Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET, Departamento de Fisiología, y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina 
690 1 0 |a CARBOHYDRATE-RESPONSIVE ELEMENT-BINDING PROTEIN 
690 1 0 |a GLUCOKINASE 
690 1 0 |a INSULIN 
690 1 0 |a LIPOGENESIS 
690 1 0 |a STEROL REGULATORY ELEMENT-BINDING PROTEIN-1C 
690 1 0 |a ADIPONECTIN 
690 1 0 |a CARBOHYDRATE RESPONSIVE ELEMENT BINDING PROTEIN 
690 1 0 |a CHOLESTEROL 
690 1 0 |a CRE RECOMBINASE 
690 1 0 |a CYCLOPHILIN 
690 1 0 |a DOPAMINE 2 RECEPTOR 
690 1 0 |a FATTY ACID SYNTHASE 
690 1 0 |a GLUCOCORTICOID RECEPTOR 
690 1 0 |a GLUCOKINASE 
690 1 0 |a GLUCOSE 
690 1 0 |a GLUCOSE 6 PHOSPHATE 
690 1 0 |a GLYCOGEN SYNTHASE 2 
690 1 0 |a GROWTH HORMONE RECEPTOR 
690 1 0 |a INSULIN 
690 1 0 |a LIPOPROTEIN LIPASE 
690 1 0 |a MESSENGER RNA 
690 1 0 |a PROLACTIN 
690 1 0 |a PROLACTIN RECEPTOR 
690 1 0 |a PROTEIN 
690 1 0 |a STEROL REGULATORY ELEMENT BINDING PROTEIN 1C 
690 1 0 |a TRIACYLGLYCEROL 
690 1 0 |a TRIACYLGLYCEROL LIPASE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a DOPAMINE 2 RECEPTOR 
690 1 0 |a GLUCOSE 
690 1 0 |a INSULIN 
690 1 0 |a MLXIPL PROTEIN, MOUSE 
690 1 0 |a NUCLEAR PROTEIN 
690 1 0 |a PROLACTIN RECEPTOR 
690 1 0 |a SREBF1 PROTEIN, MOUSE 
690 1 0 |a STEROL REGULATORY ELEMENT BINDING PROTEIN 1 
690 1 0 |a TRANSCRIPTION FACTOR 
690 1 0 |a ADIPOCYTE 
690 1 0 |a ADIPOSE TISSUE 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a BODY WEIGHT 
690 1 0 |a CHOLESTEROL BLOOD LEVEL 
690 1 0 |a FATTY LIVER 
690 1 0 |a FEMALE 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENOTYPE 
690 1 0 |a GLUCOSE HOMEOSTASIS 
690 1 0 |a GLUCOSE INTOLERANCE 
690 1 0 |a GLYCOGEN ANALYSIS 
690 1 0 |a GLYCOGEN LIVER LEVEL 
690 1 0 |a HYPERPROLACTINEMIA 
690 1 0 |a HYPOPHYSIS 
690 1 0 |a IMMUNOHISTOCHEMISTRY 
690 1 0 |a INSULIN RESPONSE 
690 1 0 |a LIPID STORAGE 
690 1 0 |a LIVER 
690 1 0 |a LIVER CELL 
690 1 0 |a LIVER WEIGHT 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a OBESITY 
690 1 0 |a PANCREAS ISLET BETA CELL 
690 1 0 |a PHENOTYPE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a TRIACYLGLYCEROL BLOOD LEVEL 
690 1 0 |a ADIPOCYTE 
690 1 0 |a ANIMAL 
690 1 0 |a ENZYME LINKED IMMUNOSORBENT ASSAY 
690 1 0 |a GENETICS 
690 1 0 |a GLUCOSE TOLERANCE TEST 
690 1 0 |a HYPERPROLACTINEMIA 
690 1 0 |a KNOCKOUT MOUSE 
690 1 0 |a LIPOGENESIS 
690 1 0 |a LIVER 
690 1 0 |a METABOLISM 
690 1 0 |a PROLACTIN SECRETING CELL 
690 1 0 |a RADIOIMMUNOASSAY 
690 1 0 |a REAL TIME POLYMERASE CHAIN REACTION 
690 1 0 |a UPREGULATION 
690 1 0 |a ADIPOCYTES 
690 1 0 |a ANIMALS 
690 1 0 |a ENZYME-LINKED IMMUNOSORBENT ASSAY 
690 1 0 |a FATTY LIVER 
690 1 0 |a FEMALE 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GLUCOSE 
690 1 0 |a GLUCOSE TOLERANCE TEST 
690 1 0 |a HEPATOCYTES 
690 1 0 |a HYPERPROLACTINEMIA 
690 1 0 |a IMMUNOHISTOCHEMISTRY 
690 1 0 |a INSULIN 
690 1 0 |a LACTOTROPHS 
690 1 0 |a LIPOGENESIS 
690 1 0 |a LIVER 
690 1 0 |a MICE 
690 1 0 |a MICE, KNOCKOUT 
690 1 0 |a NUCLEAR PROTEINS 
690 1 0 |a OBESITY 
690 1 0 |a RADIOIMMUNOASSAY 
690 1 0 |a REAL-TIME POLYMERASE CHAIN REACTION 
690 1 0 |a RECEPTORS, DOPAMINE D2 
690 1 0 |a RECEPTORS, PROLACTIN 
690 1 0 |a STEROL REGULATORY ELEMENT BINDING PROTEIN 1 
690 1 0 |a TRANSCRIPTION FACTORS 
690 1 0 |a UP-REGULATION 
650 1 7 |2 spines  |a HOMEOSTASIS 
650 1 7 |2 spines  |a HOMEOSTASIS 
700 1 |a Lopez-Vicchi, F. 
700 1 |a María Ornstein, A. 
700 1 |a Brie, B. 
700 1 |a De Winne, C. 
700 1 |a Fiore, E. 
700 1 |a Perez-Millan, M.I. 
700 1 |a Mazzolini, G. 
700 1 |a Rubinstein, M. 
700 1 |a Becu-Villalobos, D. 
773 0 |d American Physiological Society, 2016  |g v. 311  |h pp. E974-E988  |k n. 6  |p Am. J. Physiol. Endocrinol. Metab.  |x 01931849  |t American Journal of Physiology - Endocrinology and Metabolism 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006293235&doi=10.1152%2fajpendo.00200.2016&partnerID=40&md5=14c19ebcc3b15c29f32daf3b5bc959dc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1152/ajpendo.00200.2016  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01931849_v311_n6_pE974_Luque  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01931849_v311_n6_pE974_Luque  |y Registro en la Biblioteca Digital 
961 |a paper_01931849_v311_n6_pE974_Luque  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76455