A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas

We develop a purely hydrodynamic formalism to describe collisional, anisotropic instabilities in a relativistic plasma, that are usually described with kinetic theory tools. Our main motivation is the fact that coarse-grained models of high particle number systems give more clear and comprehensive p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Calzetta, E.
Otros Autores: Kandus, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: World Scientific Publishing Co. Pte Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09474caa a22010937a 4500
001 PAPER-15469
003 AR-BaUEN
005 20230518204612.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85006802687 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IMPAE 
100 1 |a Calzetta, E. 
245 1 2 |a A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas 
260 |b World Scientific Publishing Co. Pte Ltd  |c 2016 
506 |2 openaire  |e Política editorial 
504 |a Hiscock, W., Lindblom, L., (1983) Ann. Phys, 151, p. 466 
504 |a Hiscock, W., Lindblom, L., (1985) Phys. Rev D, 31, p. 725 
504 |a Hiscock, W., Lindblom, L., (1988) Contemp. Math, 71, p. 181 
504 |a Eckart, C., (1940) Phys. Rev, 58, p. 919 
504 |a Landau, L.D., Lifshitz, E.M., (1959) Fluid Mechanics, , Pergamon Press, Oxford 
504 |a Van, P., Biro, T.S., (2012) Phys. Lett B, 709, p. 106 
504 |a Israel, W., (1988) Covariant Uid Mechanics and Thermodynamics: An Introduction, , Rela-Tivistic Fluid Dynamics, eds. A. Anile and Y. Choquet-Bruhat Springer, New York 
504 |a Israel, W., (1976) Ann. Phys. (N.Y), 100, p. 310 
504 |a Liu, I.S., (1972) Arch. Rat. Mech. Anal, 46, p. 131 
504 |a Liu, I.S., Muller, I., Ruggeri, T., (1986) Ann. Phys, 169, p. 191 
504 |a Geroch, R., Lindblom, L., (1990) Phys. Rev D, 41, p. 1855 
504 |a Geroch, R., Lindblom, L., (1991) Ann. Phys. (N.Y), 207, p. 394 
504 |a Schaefer, T., (2014) Annu. Rev. Nucl. Part. Sci, 64, p. 125148. , arXiv 1403.0653 [hep-ph] 
504 |a Jeon, S., Heinz, U., (2015) Int. J Mod Phys e, 24, p. 1530010. , arXiv 1503.03931 [hep-ph] 
504 |a P. Romatschke, arXiv:1609.02820; Tinti, L., Ryblewski, R., Florkowski, W., Strickland, M., (2016) Nucl. Phys A, 946, p. 29 
504 |a Strickland, M., (2014) Acta Phys Pol B, 45, p. 2355 
504 |a S. Mrowczynski, B. Schenke and M. Strickland, arXiv:1603.08946; Huang, X.G., (2016) Rep. Prog. Phys, 79, p. 076302 
504 |a Peralta-Ramos, J., Calzetta, E., (2009) Phys. Rev D, 80, p. 126002 
504 |a Peralta-Ramos, J., Calzetta, E., (2010) Phys. Rev C, 82, p. 054905 
504 |a Manuel, C., Mrowczynski, S., (2006) Phys. Rev D, 74, p. 105003 
504 |a Peralta-Ramos, J., Calzetta, E., (2012) Phys. Rev D, 86, p. 125024 
504 |a Marle, C., (1969) Ann. Inst. Henri Poincare (A), 10, p. 67 
504 |a Marle, C., (1969) Ann. Inst. Henri Poincare (A), 10, p. 127 
504 |a Anderson, J.L., Witting, H.R., (1974) Physica, 74, p. 466 
504 |a Anderson, J.L., Witting, H.R., (1974) Physica, 74, p. 489 
504 |a Takamoto, M., Inutsuka, S.-I., (2010) Physica A, 389, p. 4580 
504 |a Aguilar, M., Calzetta, E., Preparation, 2017 
504 |a Weibel, E.S., (1959) Phys. Rev. Lett, 2, p. 83 
504 |a Schlickeiser, R., (2004) Phys Plasmas, 11, p. 5532 
504 |a Achterberg, A., Wiersma, J., (2007) Astron. Astrophys, 475, p. 1 
504 |a Achterberg, A., Wiersma, J., Norman, C.A., (2007) Astron. Astrophys, 475, p. 19 
504 |a Basu, B., (2002) Phys Plasmas, 9, p. 5131 
504 |a Bret, A., Deutsch, C., (2006) Phys Plasmas, 13, p. 042106 
504 |a Bret, A., (2006) Phys. Lett A, 359, p. 52 
504 |a Bret, A., (2009) Astrophys. J, 699, p. 990 
504 |a Mannarelli, M., Manuel, C., (2007) Phys. Rev D, 76, p. 094007 
504 |a Misner, Ch., Thorne, K., Wheeler, J.A., (1970) Gravitation Freeman, , San Francisco 
504 |a Martyushev, L.M., Seleznev, V.D., (2006) Phys. Rep, 426, p. 1 
504 |a Christen, T., Kassubek, F., (2014) J. Phys D, 47, p. 363001 
504 |a Christen, T., (2010) Eur. Phys. Lett, 89, p. 57007 
504 |a Christen, T., Kassubek, F., Quant, J., (2009) Spectrosc. Radiat. Transf, 110, p. 452 
504 |a Calzetta, E., Peralta-Ramos, J., (2010) Phys. Rev D, 82, p. 106003 
504 |a Peralta-Ramos, J., Calzetta, E., (2013) Phys. Rev D, 87, p. 034003 
504 |a E. Calzetta, arXiv:1310.0841; Joseph, D.D., Preziosi, L., (1989) Rev. Mod Phys, 61, p. 41. , [Addendum 62, 375 (1990)] 
504 |a Yoon, P.H., Davidson, R.C., (1987) Phys. Rev A, 35, p. 2718 
504 |a Schenke, B., Strickland, M., Greiner, C., Thoma, M.H., (2006) Phys. Rev D, 73, p. 125004 
504 |a Honda, M., (2004) Phys. Rev e, 69, p. 016401 
504 |a Yoon, P.H., (2007) Phys Plasmas, 14, p. 024504 
504 |a Calzetta, E., Peralta-Ramos, J., (2013) Phys. Rev D, 88, p. 095010 
504 |a Arnold, P., Moore, G.D., (2006) Phys. Rev D, 73, p. 025006 
504 |a Rebhan, A., Strickland, M., Attems, M., (2008) Phys. Rev D, 78, p. 045023 
504 |a Rebhan, A., Steineder, D., (2010) Phys. Rev D, 81, p. 085044 
504 |a Ipp, A., Rebhan, A., Strickland, M., (2011) Phys. Rev D, 84, p. 056003 
504 |a Attems, M., Rebhan, A., Strickland, M., (2013) Phys. Rev D, 87, p. 025010 
504 |a York, M.C.A., Kurkela, A., Lu, E., Moore, G.D., (2014) Phys. Rev D, 89, p. 074036 
504 |a Florchinger, S., Wiedemann, U.A., (2011) J. High Energy Phys, 11, p. 100 
504 |a Fukushima, K., (2014) Phys. Rev C, 89, p. 024907 
504 |a Khachatryan, V., (2008) Nucl. Phys A, 810, p. 109 
504 |a Carrington, M.E., Rheban, A., (2011) Eur. Phys. J C, 71, p. 1787 
520 3 |a We develop a purely hydrodynamic formalism to describe collisional, anisotropic instabilities in a relativistic plasma, that are usually described with kinetic theory tools. Our main motivation is the fact that coarse-grained models of high particle number systems give more clear and comprehensive physical descriptions of those systems than purely kinetic approaches, and can be more easily tested experimentally as well as numerically. Also they make it easier to follow perturbations from linear to nonlinear regimes. In particular, we aim at developing a theory that describes both a background nonequilibrium fluid configurations and its perturbations, to be able to account for the backreaction of the latter on the former. Our system of equations includes the usual conservation laws for the energy-momentum tensor and for the electric current, and the equations for two new tensors that encode the information about dissipation. To make contact with kinetic theory, we write the different tensors as the moments of a nonequilibrium one-particle distribution function (1pdf) which, for illustrative purposes, we take in the form of a Grad-like ansatz. Although this choice limits the applicability of the formalism to states not far from equilibrium, it retains the main features of the underlying kinetic theory. We assume the validity of the Vlasov-Boltzmann equation, with a collision integral given by the Anderson-Witting prescription, which is more suitable for highly relativistic systems than Marle's (or Bhatnagar, Gross and Krook) form, and derive the conservation laws by taking its corresponding moments. We apply our developments to study the emergence of instabilities in an anisotropic, but axially symmetric background. For small departures of isotropy we find the dispersion relation for normal modes, which admit unstable solutions for a wide range of values of the parameter space. © 2016 World Scientific Publishing Company.  |l eng 
536 |a Detalles de la financiación: Universidade Estadual de Campinas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, FAPESB-PVE-015/2015/Processo PET0013/2016, AUXPE-FAPESB-3336/2014/Processo 23038.007210/2014-19 
536 |a Detalles de la financiación: We thank P. Romatschke, M. Strickland and T. Christen for useful comments. E. Calzetta acknowledges support from ANPCyT, CONICET and the Univer- sity of Buenos Aires. A. Kandus thanks financial support from FAPESB grant AUXPE-FAPESB-3336/2014/Processo 23038.007210/2014-19 and FAPESB grant FAPESB-PVE-015/2015/Processo PET0013/2016, and Universidade Estadual de Santa Cruz. 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Buenos Aires, 1428, Argentina 
593 |a Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Rodov. Jorge Amado km 16, Ilhéus, BA, Brazil 
690 1 0 |a INSTABILITIES 
690 1 0 |a RELATIVISTIC FLUIDS 
700 1 |a Kandus, A. 
773 0 |d World Scientific Publishing Co. Pte Ltd, 2016  |g v. 31  |k n. 35  |p Int. J. Mod. Phys. A  |x 0217751X  |w (AR-BaUEN)CENRE-596  |t International Journal of Modern Physics A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006802687&doi=10.1142%2fS0217751X16501943&partnerID=40&md5=8e7cc80c2596cf62823d83743d340f6e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1142/S0217751X16501943  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0217751X_v31_n35_p_Calzetta  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0217751X_v31_n35_p_Calzetta  |y Registro en la Biblioteca Digital 
961 |a paper_0217751X_v31_n35_p_Calzetta  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 76422