Stability and Vapor Pressure of Aqueous Aggregates and Aerosols Containing a Monovalent Ion

The incidence of charged particles on the nucleation and the stability of aqueous aggregates and aerosols was reported more than a century ago. Many studies have been conducted ever since to characterize the stability, structure, and nucleation barrier of ion-water droplets. Most of these studies ha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Perez Sirkin, Y.A
Otros Autores: Factorovich, M.H, Molinero, V., Scherlis, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08953caa a22009497a 4500
001 PAPER-15062
003 AR-BaUEN
005 20230518204542.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85019558850 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPCAF 
100 1 |a Perez Sirkin, Y.A. 
245 1 0 |a Stability and Vapor Pressure of Aqueous Aggregates and Aerosols Containing a Monovalent Ion 
260 |b American Chemical Society  |c 2017 
270 1 0 |m Scherlis, D.A.; Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. IIArgentina; email: damian@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Zhang, R., Getting to the Critical Nucleus of Aerosol Formation (2010) Science, 328, pp. 1366-1367 
504 |a Aitken, J., Xii, On Dust, Fogs, and Clouds (1881) Trans. - R. Soc. Edinburgh, 30, pp. 337-368 
504 |a Wilson, C.T.R., Condensation of Water Vapour in the Presence of Dust-Free Air and other Gases (1897) Proc. R. Soc. London, 61, pp. 240-242 
504 |a Zhang, R., Khalizov, A., Wang, L., Hu, M., Xu, W., Nucleation and Growth of Nanoparticles in the Atmosphere (2012) Chem. Rev., 112, pp. 1957-2011 
504 |a Rodebush, W., The Vapor Pressure of Small Drops (1954) Proc. Natl. Acad. Sci. U. S. A., 40, pp. 789-794 
504 |a Thomson, J.J., (1888) Applications of Dynamics to Physics and Chemistry, , Macmillan 
504 |a Shchekin, A.K., Podguzova, T.S., The Modified Thomson Equation in the Theory of Heterogeneous Vapor Nucleation on Charged Solid Particles (2011) Atmos. Res., 101, pp. 493-502 
504 |a Chan, L.Y., Mohnen, V., Ion Nucleation Theory (1980) J. Atmos. Sci., 37, pp. 2323-2331 
504 |a Nadykto, A.B., Yu, F., Dipole Moment of Condensing Monomers: A New Parameter Controlling the Ion-Induced Nucleation (2004) Phys. Rev. Lett., 93, p. 016101 
504 |a Oh, K., Gao, G., Zeng, X.C., Nucleation of Water and Methanol Droplets on Cations and Anions: The Sign Preference (2001) Phys. Rev. Lett., 86, p. 5080 
504 |a Nadykto, A.B., Al Natsheh, A., Yu, F., Mikkelsen, K., Ruuskanen, J., Quantum Nature of the Sign Preference in Ion-Induced Nucleation (2006) Phys. Rev. Lett., 96, p. 125701 
504 |a Kathmann, S.M., Schenter, G.K., Garrett, B.C., Ion-Induced Nucleation: The Importance of Chemistry (2005) Phys. Rev. Lett., 94, p. 116104 
504 |a Keasler, S.J., Kim, H., Chen, B., Ion-Induced Nucleation: The Importance of Ionic Polarizability (2010) J. Phys. Chem. A, 114, pp. 4595-4600 
504 |a Factorovich, M.H., Molinero, V., Scherlis, D.A., A simple Grand Canonical Approach to Compute the Vapor Pressure of Bulk and Finite Size Systems (2014) J. Chem. Phys., 140, p. 064111 
504 |a Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor Pressure of Water Nanodroplets (2014) J. Am. Chem. Soc., 136, pp. 4508-4514 
504 |a Perez Sirkin, Y.A., Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models Without Electrostatics (2016) J. Chem. Theory Comput., 12, pp. 2942-2949 
504 |a Berendsen, H., Grigera, J., Straatsma, T., The Missing Term in Effective Pair Potentials (1987) J. Phys. Chem., 91, pp. 6269-6271 
504 |a Lee, S.H., Rasaiah, J.C., Molecular Dynamics Simulation of Ion Mobility. 2. Alkali Metal and Halide Ions Using the SPC/E Model for Water at 25 C (1996) J. Phys. Chem., 100, pp. 1420-1425 
504 |a Molinero, V., Moore, E.B., Water Modeled As an Intermediate Element between Carbon and Silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016 
504 |a Le, L., Molinero, V., Nanophase Segregation in Supercooled Aqueous Solutions and Their Glasses Driven by the Polyamorphism of Water (2011) J. Phys. Chem. A, 115, pp. 5900-5907 
504 |a Bullock, G., Molinero, V., Low-Density Liquid Water is the Mother of Ice: On the Relation between Mesostructure, Thermodynamics and Ice Crystallization in Solutions (2014) Faraday Discuss., 167, pp. 371-388 
504 |a Hudait, A., Molinero, V., Ice Crystallization in Ultrafine Water-Salt Aerosols: Nucleation, Ice-Solution Equilibrium, and Internal Structure (2014) J. Am. Chem. Soc., 136, pp. 8081-8093 
504 |a Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995) J. Comput. Phys., 117, pp. 1-19 
504 |a LAMMPS Web Page, , http://lammps.sandia.gov/, (accessed March 8 2017) 
504 |a Martin, M.G., MCCCS Towhee: A Tool for Monte Carlo Molecular Simulation (2013) Mol. Simul., 39, pp. 1212-1222 
504 |a MCCCS Towhee Web Page, , http://towhee.sourceforge.net, (accessed March 8 2017) 
504 |a Puibasset, J., Pellenq, R.J.-M., Water Adsorption on Hydrophilic Mesoporous and Plane Silica Substrates: A grand canonical Monte Carlo Simulation Study (2003) J. Chem. Phys., 118, pp. 5613-5622 
504 |a Puibasset, J., Pellenq, R.J.-M., Grand Canonical Monte Carlo Simulation Study of Water Adsorption in Silicalite at 300 K (2008) J. Phys. Chem. B, 112, pp. 6390-6397 
504 |a Malani, A., Ayappa, K.G., Adsorption Isotherms of Water on Mica: Redistribution and Film Growth (2009) J. Phys. Chem. B, 113, pp. 1058-1067 
504 |a Tombácz, E., Hajdú, A., Illés, E., László, K., Garberoglio, G., Jedlovszky, P., Water in Contact with Magnetite Nanoparticles, as Seen from Experiments and Computer Simulations (2009) Langmuir, 25, pp. 13007-13014 
504 |a Tolman, R.C., The Effect of Droplet Size on Surface Tension (1949) J. Chem. Phys., 17, pp. 333-337 
504 |a Sedlmeier, F., Netz, R.R., The Spontaneous Curvature of the Water-Hydrophobe Interface (2012) J. Chem. Phys., 137, p. 135102 
504 |a Lamoureux, G., Roux, B., Absolute Hydration Free Energy Scale for Alkali and Halide Ions Established from Simulations with a Polarizable Force Field (2006) J. Phys. Chem. B, 110, pp. 3308-3322 
520 3 |a The incidence of charged particles on the nucleation and the stability of aqueous aggregates and aerosols was reported more than a century ago. Many studies have been conducted ever since to characterize the stability, structure, and nucleation barrier of ion-water droplets. Most of these studies have focused on the free-energy surface as a function of cluster size, with an emphasis on the role of ionic charge and radius. This knowledge is fundamental to go beyond the rudimentary ion-induced classical nucleation theory. In the present article, we address this problem from a different perspective, by computing the vapor pressures of (H2O)nLi+ and (H2O)nCl- aggregates using molecular simulations. Our calculations shed light on the structure, the critical size, the range of stability, and the role of ion-water interactions in aqueous clusters. Moreover, they allow one to assess the accuracy of the classical thermodynamic model, highlighting its strengths and weaknesses. © 2017 American Chemical Society.  |l eng 
593 |a Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires, C1428EHA, Argentina 
593 |a Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States 
690 1 0 |a AEROSOLS 
690 1 0 |a AGGREGATES 
690 1 0 |a CHARGED PARTICLES 
690 1 0 |a COMPUTATION THEORY 
690 1 0 |a FREE ENERGY 
690 1 0 |a HYDROSTATIC PRESSURE 
690 1 0 |a IONS 
690 1 0 |a NUCLEATION 
690 1 0 |a CLASSICAL NUCLEATION THEORY 
690 1 0 |a CLASSICAL THERMODYNAMICS 
690 1 0 |a CLUSTER SIZES 
690 1 0 |a CRITICAL SIZE 
690 1 0 |a FREE ENERGY SURFACE 
690 1 0 |a ION-WATER INTERACTIONS 
690 1 0 |a MOLECULAR SIMULATIONS 
690 1 0 |a NUCLEATION BARRIER 
690 1 0 |a STABILITY 
700 1 |a Factorovich, M.H. 
700 1 |a Molinero, V. 
700 1 |a Scherlis, D.A. 
773 0 |d American Chemical Society, 2017  |g v. 121  |h pp. 2597-2602  |k n. 13  |p J Phys Chem A  |x 10895639  |t Journal of Physical Chemistry A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019558850&doi=10.1021%2facs.jpca.7b00642&partnerID=40&md5=fa33c3909917282f2deabe1428d9a580  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.jpca.7b00642  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10895639_v121_n13_p2597_PerezSirkin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v121_n13_p2597_PerezSirkin  |y Registro en la Biblioteca Digital 
961 |a paper_10895639_v121_n13_p2597_PerezSirkin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 76015