Stability and Vapor Pressure of Aqueous Aggregates and Aerosols Containing a Monovalent Ion
The incidence of charged particles on the nucleation and the stability of aqueous aggregates and aerosols was reported more than a century ago. Many studies have been conducted ever since to characterize the stability, structure, and nucleation barrier of ion-water droplets. Most of these studies ha...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Chemical Society
2017
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08953caa a22009497a 4500 | ||
|---|---|---|---|
| 001 | PAPER-15062 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204542.0 | ||
| 008 | 190410s2017 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85019558850 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a JPCAF | ||
| 100 | 1 | |a Perez Sirkin, Y.A. | |
| 245 | 1 | 0 | |a Stability and Vapor Pressure of Aqueous Aggregates and Aerosols Containing a Monovalent Ion |
| 260 | |b American Chemical Society |c 2017 | ||
| 270 | 1 | 0 | |m Scherlis, D.A.; Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. IIArgentina; email: damian@qi.fcen.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Zhang, R., Getting to the Critical Nucleus of Aerosol Formation (2010) Science, 328, pp. 1366-1367 | ||
| 504 | |a Aitken, J., Xii, On Dust, Fogs, and Clouds (1881) Trans. - R. Soc. Edinburgh, 30, pp. 337-368 | ||
| 504 | |a Wilson, C.T.R., Condensation of Water Vapour in the Presence of Dust-Free Air and other Gases (1897) Proc. R. Soc. London, 61, pp. 240-242 | ||
| 504 | |a Zhang, R., Khalizov, A., Wang, L., Hu, M., Xu, W., Nucleation and Growth of Nanoparticles in the Atmosphere (2012) Chem. Rev., 112, pp. 1957-2011 | ||
| 504 | |a Rodebush, W., The Vapor Pressure of Small Drops (1954) Proc. Natl. Acad. Sci. U. S. A., 40, pp. 789-794 | ||
| 504 | |a Thomson, J.J., (1888) Applications of Dynamics to Physics and Chemistry, , Macmillan | ||
| 504 | |a Shchekin, A.K., Podguzova, T.S., The Modified Thomson Equation in the Theory of Heterogeneous Vapor Nucleation on Charged Solid Particles (2011) Atmos. Res., 101, pp. 493-502 | ||
| 504 | |a Chan, L.Y., Mohnen, V., Ion Nucleation Theory (1980) J. Atmos. Sci., 37, pp. 2323-2331 | ||
| 504 | |a Nadykto, A.B., Yu, F., Dipole Moment of Condensing Monomers: A New Parameter Controlling the Ion-Induced Nucleation (2004) Phys. Rev. Lett., 93, p. 016101 | ||
| 504 | |a Oh, K., Gao, G., Zeng, X.C., Nucleation of Water and Methanol Droplets on Cations and Anions: The Sign Preference (2001) Phys. Rev. Lett., 86, p. 5080 | ||
| 504 | |a Nadykto, A.B., Al Natsheh, A., Yu, F., Mikkelsen, K., Ruuskanen, J., Quantum Nature of the Sign Preference in Ion-Induced Nucleation (2006) Phys. Rev. Lett., 96, p. 125701 | ||
| 504 | |a Kathmann, S.M., Schenter, G.K., Garrett, B.C., Ion-Induced Nucleation: The Importance of Chemistry (2005) Phys. Rev. Lett., 94, p. 116104 | ||
| 504 | |a Keasler, S.J., Kim, H., Chen, B., Ion-Induced Nucleation: The Importance of Ionic Polarizability (2010) J. Phys. Chem. A, 114, pp. 4595-4600 | ||
| 504 | |a Factorovich, M.H., Molinero, V., Scherlis, D.A., A simple Grand Canonical Approach to Compute the Vapor Pressure of Bulk and Finite Size Systems (2014) J. Chem. Phys., 140, p. 064111 | ||
| 504 | |a Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor Pressure of Water Nanodroplets (2014) J. Am. Chem. Soc., 136, pp. 4508-4514 | ||
| 504 | |a Perez Sirkin, Y.A., Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models Without Electrostatics (2016) J. Chem. Theory Comput., 12, pp. 2942-2949 | ||
| 504 | |a Berendsen, H., Grigera, J., Straatsma, T., The Missing Term in Effective Pair Potentials (1987) J. Phys. Chem., 91, pp. 6269-6271 | ||
| 504 | |a Lee, S.H., Rasaiah, J.C., Molecular Dynamics Simulation of Ion Mobility. 2. Alkali Metal and Halide Ions Using the SPC/E Model for Water at 25 C (1996) J. Phys. Chem., 100, pp. 1420-1425 | ||
| 504 | |a Molinero, V., Moore, E.B., Water Modeled As an Intermediate Element between Carbon and Silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016 | ||
| 504 | |a Le, L., Molinero, V., Nanophase Segregation in Supercooled Aqueous Solutions and Their Glasses Driven by the Polyamorphism of Water (2011) J. Phys. Chem. A, 115, pp. 5900-5907 | ||
| 504 | |a Bullock, G., Molinero, V., Low-Density Liquid Water is the Mother of Ice: On the Relation between Mesostructure, Thermodynamics and Ice Crystallization in Solutions (2014) Faraday Discuss., 167, pp. 371-388 | ||
| 504 | |a Hudait, A., Molinero, V., Ice Crystallization in Ultrafine Water-Salt Aerosols: Nucleation, Ice-Solution Equilibrium, and Internal Structure (2014) J. Am. Chem. Soc., 136, pp. 8081-8093 | ||
| 504 | |a Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995) J. Comput. Phys., 117, pp. 1-19 | ||
| 504 | |a LAMMPS Web Page, , http://lammps.sandia.gov/, (accessed March 8 2017) | ||
| 504 | |a Martin, M.G., MCCCS Towhee: A Tool for Monte Carlo Molecular Simulation (2013) Mol. Simul., 39, pp. 1212-1222 | ||
| 504 | |a MCCCS Towhee Web Page, , http://towhee.sourceforge.net, (accessed March 8 2017) | ||
| 504 | |a Puibasset, J., Pellenq, R.J.-M., Water Adsorption on Hydrophilic Mesoporous and Plane Silica Substrates: A grand canonical Monte Carlo Simulation Study (2003) J. Chem. Phys., 118, pp. 5613-5622 | ||
| 504 | |a Puibasset, J., Pellenq, R.J.-M., Grand Canonical Monte Carlo Simulation Study of Water Adsorption in Silicalite at 300 K (2008) J. Phys. Chem. B, 112, pp. 6390-6397 | ||
| 504 | |a Malani, A., Ayappa, K.G., Adsorption Isotherms of Water on Mica: Redistribution and Film Growth (2009) J. Phys. Chem. B, 113, pp. 1058-1067 | ||
| 504 | |a Tombácz, E., Hajdú, A., Illés, E., László, K., Garberoglio, G., Jedlovszky, P., Water in Contact with Magnetite Nanoparticles, as Seen from Experiments and Computer Simulations (2009) Langmuir, 25, pp. 13007-13014 | ||
| 504 | |a Tolman, R.C., The Effect of Droplet Size on Surface Tension (1949) J. Chem. Phys., 17, pp. 333-337 | ||
| 504 | |a Sedlmeier, F., Netz, R.R., The Spontaneous Curvature of the Water-Hydrophobe Interface (2012) J. Chem. Phys., 137, p. 135102 | ||
| 504 | |a Lamoureux, G., Roux, B., Absolute Hydration Free Energy Scale for Alkali and Halide Ions Established from Simulations with a Polarizable Force Field (2006) J. Phys. Chem. B, 110, pp. 3308-3322 | ||
| 520 | 3 | |a The incidence of charged particles on the nucleation and the stability of aqueous aggregates and aerosols was reported more than a century ago. Many studies have been conducted ever since to characterize the stability, structure, and nucleation barrier of ion-water droplets. Most of these studies have focused on the free-energy surface as a function of cluster size, with an emphasis on the role of ionic charge and radius. This knowledge is fundamental to go beyond the rudimentary ion-induced classical nucleation theory. In the present article, we address this problem from a different perspective, by computing the vapor pressures of (H2O)nLi+ and (H2O)nCl- aggregates using molecular simulations. Our calculations shed light on the structure, the critical size, the range of stability, and the role of ion-water interactions in aqueous clusters. Moreover, they allow one to assess the accuracy of the classical thermodynamic model, highlighting its strengths and weaknesses. © 2017 American Chemical Society. |l eng | |
| 593 | |a Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires, C1428EHA, Argentina | ||
| 593 | |a Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States | ||
| 690 | 1 | 0 | |a AEROSOLS |
| 690 | 1 | 0 | |a AGGREGATES |
| 690 | 1 | 0 | |a CHARGED PARTICLES |
| 690 | 1 | 0 | |a COMPUTATION THEORY |
| 690 | 1 | 0 | |a FREE ENERGY |
| 690 | 1 | 0 | |a HYDROSTATIC PRESSURE |
| 690 | 1 | 0 | |a IONS |
| 690 | 1 | 0 | |a NUCLEATION |
| 690 | 1 | 0 | |a CLASSICAL NUCLEATION THEORY |
| 690 | 1 | 0 | |a CLASSICAL THERMODYNAMICS |
| 690 | 1 | 0 | |a CLUSTER SIZES |
| 690 | 1 | 0 | |a CRITICAL SIZE |
| 690 | 1 | 0 | |a FREE ENERGY SURFACE |
| 690 | 1 | 0 | |a ION-WATER INTERACTIONS |
| 690 | 1 | 0 | |a MOLECULAR SIMULATIONS |
| 690 | 1 | 0 | |a NUCLEATION BARRIER |
| 690 | 1 | 0 | |a STABILITY |
| 700 | 1 | |a Factorovich, M.H. | |
| 700 | 1 | |a Molinero, V. | |
| 700 | 1 | |a Scherlis, D.A. | |
| 773 | 0 | |d American Chemical Society, 2017 |g v. 121 |h pp. 2597-2602 |k n. 13 |p J Phys Chem A |x 10895639 |t Journal of Physical Chemistry A | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019558850&doi=10.1021%2facs.jpca.7b00642&partnerID=40&md5=fa33c3909917282f2deabe1428d9a580 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1021/acs.jpca.7b00642 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_10895639_v121_n13_p2597_PerezSirkin |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v121_n13_p2597_PerezSirkin |y Registro en la Biblioteca Digital |
| 961 | |a paper_10895639_v121_n13_p2597_PerezSirkin |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 76015 | ||