CeIV–GdIII Mixed Oxides as Hosts for ErIII-Based Upconversion Phosphors

A family of ErIII and ErIII–YbIII based nanophosphors, hosted in monophasic oxidic CeIV–GdIII binary solid solutions, was prepared. The samples were formulated with a constant ErIII content as the activator, with the eventual addition of YbIII as a sensitizer. The amorphous Ce0.94−xGdxEr0.06(OH)CO3H...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sorbello, C.
Otros Autores: Gross, P., Strassert, C.A, Jobbágy, M., Barja, B.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Wiley-VCH Verlag 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11794caa a22012737a 4500
001 PAPER-14992
003 AR-BaUEN
005 20230518204536.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85016301237 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CPCHF 
100 1 |a Sorbello, C. 
245 1 0 |a CeIV–GdIII Mixed Oxides as Hosts for ErIII-Based Upconversion Phosphors 
260 |b Wiley-VCH Verlag  |c 2017 
270 1 0 |m Jobbágy, M.; Departamento de Química Inorgánica Analítica y Química Física FCEyN-Universidad de Buenos Aires, INQUIMAE-CONICET, CABA, Ciudad Universitaria Pabellón 2, Argentina; email: jobbag@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Sooklal, K., Cullum, B.S., Angel, S.M., Murphy, C.J., (1996) J. Phys. Chem., 100, pp. 4551-4555 
504 |a Yi, G.S., Lu, H.C., Zhao, S.Y., Yue, G., Yang, W.J., Chen, D.P., Guo, L.H., (2004) Nano Lett., 4, pp. 2191-2196 
504 |a Tissue, B.M., (1998) Chem. Mater., 10, pp. 2837-2845 
504 |a Wang, F., Banerjee, D., Liu, Y.S., Chen, X.Y., Liu, X.G., (2010) Analyst, 135, pp. 1839-1854 
504 |a Chatterjee, D.K., Rufaihah, A.J., Zhang, Y., (2008) Biomaterials, 29, pp. 937-943 
504 |a Haase, M., Schafer, H., (2011) Angew. Chem. Int. Ed., 50, pp. 5808-5829 
504 |a (2011) Angew. Chem., 123, pp. 5928-5950 
504 |a Wang, F., Liu, X., (2009) Chem. Soc. Rev., 38, pp. 976-989 
504 |a Wang, F., Liu, X.G., (2008) J. Am. Chem. Soc., 130, pp. 5642-5643 
504 |a Chen, D., Zhou, Y., Wan, Z., Ji, Z., Huang, P., (2015) Dalton Trans., 44, pp. 5288-5293 
504 |a Chen, D., Xu, M., Huang, P., (2016) Sens. Actuators B, 231, pp. 576-583 
504 |a Vetrone, F., Boyer, J.C., Capobianco, J.A., Speghini, A., Bettinelli, M., (2003) Chem. Mater., 15, pp. 2737-2743 
504 |a Patra, A., Friend, C.S., Kapoor, R., Prasad, P.N., (2002) J. Phys. Chem. B, 106, pp. 1909-1912 
504 |a Heer, S., Lehmann, O., Haase, M., Gudel, H.U., (2003) Angew. Chem. Int. Ed., 42, pp. 3179-3182 
504 |a (2003) Angew. Chem., 115, pp. 3288-3291 
504 |a Sun, Y.J., Liu, H.J., Wang, X., Kong, X.G., Zhang, H., (2006) Chem. Mater., 18, pp. 2726-2732 
504 |a Babu, S., Cho, J.-H., Dowding, J.M., Heckert, E., Komanski, C., Das, S., Colon, J., Seal, S., (2010) Chem. Commun., 46, pp. 6915-6917 
504 |a Cho, J.H., Bass, M., Babu, S., Dowding, J.M., Self, W.T., Seal, S., (2012) J. Lumin., 132, pp. 743-749 
504 |a Xu, L., Yu, Y., Li, X., Somesfalean, G., Zhang, Y., Gao, H., Zhang, Z., (2008) Opt. Mater., 30, pp. 1284-1288 
504 |a Guo, H., Dong, N., Yin, M., Zhang, W.P., Lou, L.R., Xia, S.D., (2004) J. Phys. Chem. B, 108, pp. 19205-19209 
504 |a Lei, Y.Q., Song, H.W., Yang, L.M., Yu, L.X., Liu, Z.X., Pan, G.H., Bai, X., Fan, L.B., (2005) J. Chem. Phys., 123, p. 174710 
504 |a Setua, S., Menon, D., Asok, A., Nair, S., Koyakutty, M., (2010) Biomaterials, 31, pp. 714-729 
504 |a Li, J.-G., Li, X., Sun, X., Ishigaki, T., (2008) J. Phys. Chem. C, 112, pp. 11707-11716 
504 |a Chen, J., Patil, S., Seal, S., McGinnis, J.F., (2006) Nat. Nanotechnol., 1, pp. 142-150 
504 |a Heckert, E.G., Karakoti, A.S., Seal, S., Self, W.T., (2008) Biomaterials, 29, pp. 2705-2709 
504 |a Karakoti, A., Singh, S., Dowding, J.M., Seal, S., Self, W.T., (2010) Chem. Soc. Rev., 39, pp. 4422-4432 
504 |a Sorbello, C., Barja, B.C., Jobbagy, M., (2014) J. Mater. Chem. C, 2, pp. 1010-1017 
504 |a Artini, C., Pani, M., Carnasciali, M.M., Buscaglia, M.T., Plaisier, J.R., Costa, G.A., (2015) Inorg. Chem., 54, pp. 4126-4137 
504 |a Hu, L.F., Ma, R.Z., Ozawa, T.C., Sasaki, T., (2009) Angew. Chem. Int. Ed., 48, pp. 3846-3849 
504 |a (2009) Angew. Chem., 121, pp. 3904-3907 
504 |a Wu, C., Qin, W., Qin, G., Zhao, D., Zhang, J., Huang, S., Lü, S., Lin, H., (2003) Appl. Phys. Lett., 82, pp. 520-522 
504 |a Vecht, A., Gibbons, C., Davies, D., Jing, X., Marsh, P., Ireland, T., Silver, J., Barber, D., (1999) J. Vac. Sci. Technol. B, 17, pp. 750-757 
504 |a Qiu, H., Chen, G., Fan, R., Cheng, C., Hao, S., Chen, D., Yang, C., (2011) Chem. Commun., 47, pp. 9648-9650 
504 |a Soler-Iltia, G., Jobbagy, M., Candal, R.J., Regazzoni, A.E., Blesa, M.A., (1998) J. Dispersion Sci. Technol., 19, pp. 207-228 
504 |a Matijevic, E., Hsu, W.P., (1987) J. Colloid Interface Sci., 118, pp. 506-523 
504 |a Aiken, B., Hsu, W.P., Matijevic, E., (1988) J. Am. Ceram. Soc., 71, pp. 845-853 
504 |a Rojas, T.C., Ocana, M., (2002) Scr. Mater., 46, pp. 655-660 
504 |a Jobbágy, M., Sorbello, C., Sileo, E.E., (2009) J. Phys. Chem. C, 113, pp. 10853-10857 
504 |a Tian, Y., Tian, B., Cui, C., Huang, P., Wang, L., Chen, B., (2015) RSC Adv., 5, pp. 14123-14128 
504 |a Kang, Z.C., Eyring, L., (1990) J. Solid State Chem., 88, pp. 303-323 
504 |a Nakamura, A., Imai, K., Igawa, N., Okamoto, Y., Yamamoto, E., Matsukawa, S., Takahashi, M., (2012) Hyperfine Interact., 207, pp. 67-71 
504 |a Jobbágy, M., Marino, F., Schönbrod, B., Baronetti, G., Laborde, M., (2006) Chem. Mater., 18, pp. 1945-1950 
504 |a Artini, C., Pani, M., Lausi, A., Masini, R., Costa, G.A., (2014) Inorg. Chem., 53, pp. 10140-10149 
504 |a Artini, C., Costa, G.A., Pani, M., Lausi, A., Plaisier, J., (2012) J. Solid State Chem., 190, pp. 24-28 
504 |a Shannon, R.D., (1976) Acta Crystallogr. Sect. A, 32, pp. 751-767 
504 |a Hong, S.J., Virkar, A.V., (1995) J. Am. Ceram. Soc., 78, pp. 433-439 
504 |a Kim, D.J., (1989) J. Am. Ceram. Soc., 72, pp. 1415-1421 
504 |a Li, J.-G., Ikegami, T., Wang, Y., Mori, T., (2003) J. Am. Ceram. Soc., 86, pp. 915-921 
504 |a Li, J.G., Li, X.D., Sun, X.D., Ikegami, T., Ishigaki, T., (2008) Chem. Mater., 20, pp. 2274-2281 
504 |a Auzel, F., (2004) Chem. Rev., 104, pp. 139-173 
504 |a (2000) Upconversion Processes in Transition Metal and Rare Earth Metal Systems, D. R. Gamelin, H. U. Gudel in Topics in Current Chemistry, pp. 1-56. , vol 214, pp 
504 |a Chen, X.Y., Ma, E., Liu, G.K., (2007) J. Phys. Chem. C, 111, pp. 10404-10411 
504 |a Guo, H., (2007) J. Solid State Chem., 180, pp. 127-131 
504 |a Guo, H., Li, Y., Wang, D., Zhang, W., Yin, M., Lou, L., Xia, S., (2004) J. Alloys Compd., 376, pp. 23-27 
504 |a Xiao, S., Yang, X., Liu, Z., Yan, X.H., (2004) J. Appl. Phys., 96, pp. 1360-1364 
504 |a Pollnau, M., Gamelin, D.R., Luthi, S.R., Gudel, H.U., Hehlen, M.P., (2000) Phys. Rev. B, 61, pp. 3337-3346 
504 |a Goldner, P., Pelle, F., (1996) Opt. Mater., 5, pp. 239-249 
504 |a Chen, G.Y., Liang, H.J., Liu, H.C., Somesfalean, G., Zhang, Z.G., (2009) J. Appl. Phys., 105, p. 114315 
504 |a Sivakumar, S., Van Veggel, F.C.J.M., May, P.S., (2007) J. Am. Chem. Soc., 129, pp. 620-625 
504 |a Nakayama, M., Martin, M., (2009) Phys. Chem. Chem. Phys., 11, pp. 3241-3249 
504 |a Sen, S., Avila-Paredes, H.J., Kim, S., (2008) J. Mater. Chem., 18, pp. 3915-3917 
504 |a Kim, N.J., Stebbins, J.F., (2007) Chem. Mater., 19, pp. 5742-5747 
504 |a Tiseanu, C., Parvulescu, V.I., Sanchez-Dominguez, M., Boutonnet, M., (2012) J. Appl. Phys., 112, p. 013521 
504 |a Tiseanu, C., Cojocaru, B., Avram, D., Parvulescu, V.I., Vela-Gonzalez, A.V., Sanchez-Dominguez, M., (2013) J. Phys. D, 46, p. 275302 
504 |a Shehata, N., Meehan, K., Hudait, M., Jain, N., (2012) J. Nanopart. Res., 14, p. 1173 
520 3 |a A family of ErIII and ErIII–YbIII based nanophosphors, hosted in monophasic oxidic CeIV–GdIII binary solid solutions, was prepared. The samples were formulated with a constant ErIII content as the activator, with the eventual addition of YbIII as a sensitizer. The amorphous Ce0.94−xGdxEr0.06(OH)CO3H2O and Ce0.94−xGdxEr0.05Yb0.01(OH)CO3H2O precursors were prepared by following the urea method to obtain monodispersed spheres of tunable size ranging from 30 to 450 nm. After being decomposed at 1273 K under an atmosphere of air, the precursors of 200 nm in diameter evolved into monophasic polycrystalline particles preserving the parent shape and size. The role of the composition of the binary matrices in the emission properties was evaluated for two different excitation wavelengths (976 nm and 780 nm) based on the upconversion (UC) emission spectra and their dependence on the incident power. The yield of the UC process is discussed in the framework of established and novel alternative mechanisms. The number of vacancies and mainly the symmetry of the ErIII environment play major roles in the deactivation pathways of the UC emission mechanisms. However, the colours obtained by employing bare CeIV or GdIII hosts are preserved in the related monophasic CeIV-rich or GdIII-rich binary hosts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim  |l eng 
536 |a Detalles de la financiación: PIP 11220110101020 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT 20020130100610BA 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Deutscher Akademischer Austausch Dienst Kairo 
536 |a Detalles de la financiación: US-Egypt Joint Board on Scientific and Technological Cooperation 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2012-1167 
536 |a Detalles de la financiación: This work was supported by the University of Buenos Aires (UBACyT 20020130100610BA), the Agencia Nacional de Promoci?n Cient?fica y Tecnol?gica (ANPCyT PICT 2012-1167) and Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET PIP 11220110101020). C.S. acknowledges CONICET for a doctoral fellowship. B.B. and M.J. are Research Scientist of CONICET (Argentina). B.C.B. thanks to the Deutscher Akademischer Austausch Dienst (DAAD) for the financial support received for an international research exchange within the Scientific and Technological Cooperation Program (Argentine-Germany). 
593 |a Departamento de Química Inorgánica Analítica y Química Física FCEyN-Universidad de Buenos Aires, INQUIMAE-CONICET, CABA, Ciudad Universitaria Pabellón 2C1428EHA, Argentina 
593 |a Institute for Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9, Oldenburg, 26129, Germany 
593 |a Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, Münster, 48149, Germany 
690 1 0 |a ENERGY TRANSFER 
690 1 0 |a LANTHANIDES 
690 1 0 |a LUMINESCENCE 
690 1 0 |a PHOTOCHEMISTRY 
690 1 0 |a SOLID-STATE STRUCTURES 
700 1 |a Gross, P. 
700 1 |a Strassert, C.A. 
700 1 |a Jobbágy, M. 
700 1 |a Barja, B.C. 
773 0 |d Wiley-VCH Verlag, 2017  |g v. 18  |h pp. 1407-1414  |k n. 10  |p ChemPhysChem  |x 14394235  |t ChemPhysChem 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016301237&doi=10.1002%2fcphc.201601262&partnerID=40&md5=b9a059efd3b82ccbda8cf09d01d82289  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/cphc.201601262  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14394235_v18_n10_p1407_Sorbello  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14394235_v18_n10_p1407_Sorbello  |y Registro en la Biblioteca Digital 
961 |a paper_14394235_v18_n10_p1407_Sorbello  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion