Marginal integration M-estimators for additive models

Additive regression models have a long history in multivariate non-parametric regression. They provide a model in which the regression function is decomposed as a sum of functions, each of them depending only on a single explanatory variable. The advantage of additive models over general non-paramet...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Boente, G.
Otros Autores: Martínez, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer New York LLC 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08895caa a22007817a 4500
001 PAPER-14945
003 AR-BaUEN
005 20230518204533.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84991373045 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Boente, G. 
245 1 0 |a Marginal integration M-estimators for additive models 
260 |b Springer New York LLC  |c 2017 
270 1 0 |m Boente, G.; Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS, CONICET, Ciudad Universitaria, Pabellón 1, Argentina; email: gboente@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alimadad, A., Salibián-Barrera, M., An outlier-robust fit for generalized additive models with applications to disease outbreak detection (2012) J Am Stat Assoc, 106, pp. 719-731 
504 |a Baek, J., Wehrly, T., Kernel estimation for additive models under dependence (1993) Stoch Process Appl, 47, pp. 95-112 
504 |a Bianco, A., Boente, G., Robust kernel estimators for additive models with dependent observations (1998) Can J Stat, 6, pp. 239-255 
504 |a Bianco, A., Boente, G., Robust estimators under a semiparametric partly linear autoregression model: asymptotic behavior and bandwidth selection (2007) J Time Ser Anal, 28, pp. 274-306 
504 |a Boente, G., Fraiman, R., Robust nonparametric regression estimation (1989) J Multivar Anal, 29, pp. 180-198 
504 |a Boente, G., Martínez, A., Estimating additive models with missing responses (2016) Commun Stat Theory Methods, 45, pp. 413-426 
504 |a Boente, G., Fraiman, R., Meloche, J., Robust plug-in bandwidth estimators in nonparametric regression (1997) J Stat Plan Inference, 57, pp. 109-142 
504 |a Boente, G., González-Manteiga, W., Pérez-González, A., Robust nonparametric estimation with missing data (2009) J Stat Plan Inference, 139, pp. 571-592 
504 |a Boente, G., Ruiz, M., Zamar, R., On a robust local estimator for the scale function in heteroscedastic nonparametric regression (2010) Stat Probab Lett, 80, pp. 1185-1195 
504 |a Buja, A., Hastie, T., Tibshirani, R., Linear smoothers and additive models (with discussion) (1989) Ann Stat, 17, pp. 453-555 
504 |a Cantoni, E., Ronchetti, E., Resistant selection of the smoothing parameter for smoothing splines (2001) Stat Comput, 11, pp. 141-146 
504 |a Chen, R., Härdle, W., Linton, O., Serverance-Lossin, E., Härdle, W., Schimek, M.G., Nonparametric estimation of additive separable regression models (1996) Statistical theory and computational aspects of smoothing. Proceedings of the COMPSTAT 94 satellite meeting. Springer, pp. 247-265 
504 |a Croux, C., Gijbels, I., Prosdocimi, I., Robust estimation of mean and dispersion functions in extended generalized additive models (2011) Biometrics, 68, pp. 31-44 
504 |a Hastie, T.J., Tibshirani, R.J., (1990) Generalized additive models. Monographs on statistics and applied probability No. 43, , Chapman and Hall, London 
504 |a Hengartner, N., Sperlich, S., Rate optimal estimation with the integration method in the presence of many covariates (2005) J Multivar Anal, 95, pp. 246-272 
504 |a Kong, E., Linton, O., Xia, Y., Uniform Bahadur representation for local polynomial estimates of M -regression and its application to the additive model (2010) Econom Theory, 26, pp. 1529-1564 
504 |a Leung, D., Cross-validation in nonparametric regression with outliers (2005) Ann Stat, 33, pp. 2291-2310 
504 |a Leung, D., Marriott, F., Wu, E., Bandwidth selection in robust smoothing (1993) J Nonparametric Stat, 4, pp. 333-339 
504 |a Li, J., (2012) Zheng Z, , http://www.math.pku.edu.cn:8000/var/preprint/7065, Zheng M, Robust estimation of additive models based on marginal integration 
504 |a Linton, O., Nielsen, J., A kernel method of estimating structured nonparametric regression based on marginal integration (1995) Biometrika, 82, pp. 93-101 
504 |a Maronna, R., Martin, R.D., Yohai, V., (2006) Robust statistics: theory and methods, , Wiley, New York 
504 |a Martínez-Miranda, M.D., Raya-Miranda, R., González-Manteiga, W., González-Carmona, A., A bootstrap local bandwidth selector for additive models (2008) J Comput Graph Stat, 17, pp. 38-55 
504 |a Nielsen, J., Linton, O., An optimization interpretation of integration and back-fitting estimators for separable nonparametric models (1998) J R Stat Soc, 60, pp. 217-222 
504 |a Raya-Miranda, R., Martínez-Miranda, M.D., Data-driven local bandwidth selection for additive models with missing data (2011) Appl Math Comput, 217, pp. 10328-10342 
504 |a Severance-Lossin, E., Sperlich, S., Estimation of derivatives for additive separable models (1999) Statistics, 33, pp. 241-265 
504 |a Sperlich, S., Linton, O., Härdle, W., Integration and backfitting methods in additive models-finite sample properties and comparison (1999) TEST, 8, pp. 419-458 
504 |a Stone, C.J., Optimal rates of convergence for nonparametric estimators (1980) Ann Stat, 8, pp. 1348-1360 
504 |a Stone, C.J., Optimal global rates of convergence for nonparametric regression (1982) Ann Stat, 10, pp. 1040-1053 
504 |a Stone, C.J., Additive regression and other nonparametric models (1985) Ann Stat, 13, pp. 689-705 
504 |a Tjøstheim, D., Auestad, B., Nonparametric identification of nonlinear time series: selecting significant lags (1994) J Am Stat Assoc, 89, pp. 1410-1430 
504 |a Wang, F., Scott, D., The L1 method for robust nonparametric regression (1994) J Am Stat Assoc, 89, pp. 65-76 
504 |a Wong, R.K.W., Yao, F., Lee, T.C.M., Robust estimation for generalized additive models (2014) J Comput Graph Stat, 23, pp. 270-289 
520 3 |a Additive regression models have a long history in multivariate non-parametric regression. They provide a model in which the regression function is decomposed as a sum of functions, each of them depending only on a single explanatory variable. The advantage of additive models over general non-parametric regression models is that they allow to obtain estimators converging at the optimal univariate rate avoiding the so-called curse of dimensionality. Beyond backfitting, marginal integration is a common procedure to estimate each component in additive models. In this paper, we propose a robust estimator of the additive components which combines local polynomials on the component to be estimated with the marginal integration procedure. The proposed estimators are consistent and asymptotically normally distributed. A simulation study allows to show the advantage of the proposal over the classical one when outliers are present in the responses, leading to estimators with good robustness and efficiency properties. © 2016, Sociedad de Estadística e Investigación Operativa.  |l eng 
536 |a Detalles de la financiación: 20120130100279BA 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 2014-0351 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: The authors wish to thank the Associate Editor and two anonymous referees for valuable comments which led to an improved version of the original paper. This research was partially supported by Grants pip 112-201101-00339 from the Consejo Nacional de Investigaciones Cient?ficas y T?cnicas , pict 2014-0351 from the Agencia Nacional de Promoci?n Cient?fica y Tecnol?gica and 20120130100279BA from the Universidad de Buenos Aires at Buenos Aires, Argentina. 
593 |a Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS, CONICET, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina 
690 1 0 |a ADDITIVE MODELS 
690 1 0 |a KERNEL WEIGHTS 
690 1 0 |a LOCAL M-ESTIMATION 
690 1 0 |a MARGINAL INTEGRATION 
690 1 0 |a ROBUSTNESS 
700 1 |a Martínez, A. 
773 0 |d Springer New York LLC, 2017  |g v. 26  |h pp. 231-260  |k n. 2  |p Test  |x 11330686  |t Test 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991373045&doi=10.1007%2fs11749-016-0508-0&partnerID=40&md5=daf29153573c141d83f192627d5c9fbb  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11749-016-0508-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_11330686_v26_n2_p231_Boente  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11330686_v26_n2_p231_Boente  |y Registro en la Biblioteca Digital 
961 |a paper_11330686_v26_n2_p231_Boente  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75898