Marginal integration M-estimators for additive models
Additive regression models have a long history in multivariate non-parametric regression. They provide a model in which the regression function is decomposed as a sum of functions, each of them depending only on a single explanatory variable. The advantage of additive models over general non-paramet...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Springer New York LLC
2017
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 08895caa a22007817a 4500 | ||
---|---|---|---|
001 | PAPER-14945 | ||
003 | AR-BaUEN | ||
005 | 20230518204533.0 | ||
008 | 190410s2017 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-84991373045 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Boente, G. | |
245 | 1 | 0 | |a Marginal integration M-estimators for additive models |
260 | |b Springer New York LLC |c 2017 | ||
270 | 1 | 0 | |m Boente, G.; Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS, CONICET, Ciudad Universitaria, Pabellón 1, Argentina; email: gboente@dm.uba.ar |
506 | |2 openaire |e Política editorial | ||
504 | |a Alimadad, A., Salibián-Barrera, M., An outlier-robust fit for generalized additive models with applications to disease outbreak detection (2012) J Am Stat Assoc, 106, pp. 719-731 | ||
504 | |a Baek, J., Wehrly, T., Kernel estimation for additive models under dependence (1993) Stoch Process Appl, 47, pp. 95-112 | ||
504 | |a Bianco, A., Boente, G., Robust kernel estimators for additive models with dependent observations (1998) Can J Stat, 6, pp. 239-255 | ||
504 | |a Bianco, A., Boente, G., Robust estimators under a semiparametric partly linear autoregression model: asymptotic behavior and bandwidth selection (2007) J Time Ser Anal, 28, pp. 274-306 | ||
504 | |a Boente, G., Fraiman, R., Robust nonparametric regression estimation (1989) J Multivar Anal, 29, pp. 180-198 | ||
504 | |a Boente, G., Martínez, A., Estimating additive models with missing responses (2016) Commun Stat Theory Methods, 45, pp. 413-426 | ||
504 | |a Boente, G., Fraiman, R., Meloche, J., Robust plug-in bandwidth estimators in nonparametric regression (1997) J Stat Plan Inference, 57, pp. 109-142 | ||
504 | |a Boente, G., González-Manteiga, W., Pérez-González, A., Robust nonparametric estimation with missing data (2009) J Stat Plan Inference, 139, pp. 571-592 | ||
504 | |a Boente, G., Ruiz, M., Zamar, R., On a robust local estimator for the scale function in heteroscedastic nonparametric regression (2010) Stat Probab Lett, 80, pp. 1185-1195 | ||
504 | |a Buja, A., Hastie, T., Tibshirani, R., Linear smoothers and additive models (with discussion) (1989) Ann Stat, 17, pp. 453-555 | ||
504 | |a Cantoni, E., Ronchetti, E., Resistant selection of the smoothing parameter for smoothing splines (2001) Stat Comput, 11, pp. 141-146 | ||
504 | |a Chen, R., Härdle, W., Linton, O., Serverance-Lossin, E., Härdle, W., Schimek, M.G., Nonparametric estimation of additive separable regression models (1996) Statistical theory and computational aspects of smoothing. Proceedings of the COMPSTAT 94 satellite meeting. Springer, pp. 247-265 | ||
504 | |a Croux, C., Gijbels, I., Prosdocimi, I., Robust estimation of mean and dispersion functions in extended generalized additive models (2011) Biometrics, 68, pp. 31-44 | ||
504 | |a Hastie, T.J., Tibshirani, R.J., (1990) Generalized additive models. Monographs on statistics and applied probability No. 43, , Chapman and Hall, London | ||
504 | |a Hengartner, N., Sperlich, S., Rate optimal estimation with the integration method in the presence of many covariates (2005) J Multivar Anal, 95, pp. 246-272 | ||
504 | |a Kong, E., Linton, O., Xia, Y., Uniform Bahadur representation for local polynomial estimates of M -regression and its application to the additive model (2010) Econom Theory, 26, pp. 1529-1564 | ||
504 | |a Leung, D., Cross-validation in nonparametric regression with outliers (2005) Ann Stat, 33, pp. 2291-2310 | ||
504 | |a Leung, D., Marriott, F., Wu, E., Bandwidth selection in robust smoothing (1993) J Nonparametric Stat, 4, pp. 333-339 | ||
504 | |a Li, J., (2012) Zheng Z, , http://www.math.pku.edu.cn:8000/var/preprint/7065, Zheng M, Robust estimation of additive models based on marginal integration | ||
504 | |a Linton, O., Nielsen, J., A kernel method of estimating structured nonparametric regression based on marginal integration (1995) Biometrika, 82, pp. 93-101 | ||
504 | |a Maronna, R., Martin, R.D., Yohai, V., (2006) Robust statistics: theory and methods, , Wiley, New York | ||
504 | |a Martínez-Miranda, M.D., Raya-Miranda, R., González-Manteiga, W., González-Carmona, A., A bootstrap local bandwidth selector for additive models (2008) J Comput Graph Stat, 17, pp. 38-55 | ||
504 | |a Nielsen, J., Linton, O., An optimization interpretation of integration and back-fitting estimators for separable nonparametric models (1998) J R Stat Soc, 60, pp. 217-222 | ||
504 | |a Raya-Miranda, R., Martínez-Miranda, M.D., Data-driven local bandwidth selection for additive models with missing data (2011) Appl Math Comput, 217, pp. 10328-10342 | ||
504 | |a Severance-Lossin, E., Sperlich, S., Estimation of derivatives for additive separable models (1999) Statistics, 33, pp. 241-265 | ||
504 | |a Sperlich, S., Linton, O., Härdle, W., Integration and backfitting methods in additive models-finite sample properties and comparison (1999) TEST, 8, pp. 419-458 | ||
504 | |a Stone, C.J., Optimal rates of convergence for nonparametric estimators (1980) Ann Stat, 8, pp. 1348-1360 | ||
504 | |a Stone, C.J., Optimal global rates of convergence for nonparametric regression (1982) Ann Stat, 10, pp. 1040-1053 | ||
504 | |a Stone, C.J., Additive regression and other nonparametric models (1985) Ann Stat, 13, pp. 689-705 | ||
504 | |a Tjøstheim, D., Auestad, B., Nonparametric identification of nonlinear time series: selecting significant lags (1994) J Am Stat Assoc, 89, pp. 1410-1430 | ||
504 | |a Wang, F., Scott, D., The L1 method for robust nonparametric regression (1994) J Am Stat Assoc, 89, pp. 65-76 | ||
504 | |a Wong, R.K.W., Yao, F., Lee, T.C.M., Robust estimation for generalized additive models (2014) J Comput Graph Stat, 23, pp. 270-289 | ||
520 | 3 | |a Additive regression models have a long history in multivariate non-parametric regression. They provide a model in which the regression function is decomposed as a sum of functions, each of them depending only on a single explanatory variable. The advantage of additive models over general non-parametric regression models is that they allow to obtain estimators converging at the optimal univariate rate avoiding the so-called curse of dimensionality. Beyond backfitting, marginal integration is a common procedure to estimate each component in additive models. In this paper, we propose a robust estimator of the additive components which combines local polynomials on the component to be estimated with the marginal integration procedure. The proposed estimators are consistent and asymptotically normally distributed. A simulation study allows to show the advantage of the proposal over the classical one when outliers are present in the responses, leading to estimators with good robustness and efficiency properties. © 2016, Sociedad de Estadística e Investigación Operativa. |l eng | |
536 | |a Detalles de la financiación: 20120130100279BA | ||
536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 2014-0351 | ||
536 | |a Detalles de la financiación: Universidad de Buenos Aires | ||
536 | |a Detalles de la financiación: The authors wish to thank the Associate Editor and two anonymous referees for valuable comments which led to an improved version of the original paper. This research was partially supported by Grants pip 112-201101-00339 from the Consejo Nacional de Investigaciones Cient?ficas y T?cnicas , pict 2014-0351 from the Agencia Nacional de Promoci?n Cient?fica y Tecnol?gica and 20120130100279BA from the Universidad de Buenos Aires at Buenos Aires, Argentina. | ||
593 | |a Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS, CONICET, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina | ||
690 | 1 | 0 | |a ADDITIVE MODELS |
690 | 1 | 0 | |a KERNEL WEIGHTS |
690 | 1 | 0 | |a LOCAL M-ESTIMATION |
690 | 1 | 0 | |a MARGINAL INTEGRATION |
690 | 1 | 0 | |a ROBUSTNESS |
700 | 1 | |a Martínez, A. | |
773 | 0 | |d Springer New York LLC, 2017 |g v. 26 |h pp. 231-260 |k n. 2 |p Test |x 11330686 |t Test | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991373045&doi=10.1007%2fs11749-016-0508-0&partnerID=40&md5=daf29153573c141d83f192627d5c9fbb |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1007/s11749-016-0508-0 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_11330686_v26_n2_p231_Boente |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11330686_v26_n2_p231_Boente |y Registro en la Biblioteca Digital |
961 | |a paper_11330686_v26_n2_p231_Boente |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 75898 |