Asymptotic behavior of the curves in the Fučík spectrum
In this work, we study the asymptotic behavior of the curves of the Fučík spectrum for weighted second-order linear ordinary differential equations. We prove a Weyl type asymptotic behavior of the hyperbolic type curves in the spectrum in terms of some integrals of the weights. We present an algorit...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
World Scientific Publishing Co. Pte Ltd
2017
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 04673caa a22005177a 4500 | ||
---|---|---|---|
001 | PAPER-14852 | ||
003 | AR-BaUEN | ||
005 | 20230518204527.0 | ||
008 | 190410s2017 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-84973645228 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Pinasco, J.P. | |
245 | 1 | 0 | |a Asymptotic behavior of the curves in the Fučík spectrum |
260 | |b World Scientific Publishing Co. Pte Ltd |c 2017 | ||
506 | |2 openaire |e Política editorial | ||
504 | |a Alif, M., Sur le spectre de Fucik du p-Laplacien avec des Poids indefinis (2002) C. R. Math. Acad. Sci. Paris, 334, pp. 1061-1066 | ||
504 | |a Alif, M., Gossez, J.-P., On the Fučik spectrum with indefinite weights (2001) Differential Integral Equations, 14, pp. 1511-1530 | ||
504 | |a Brown, B.M., Reichel, W., Computing eigenvalues and Fučik spectrum of the radially symmetric p-Laplacian (2002) J. Comput. Appl. Math, 148, pp. 183-211 | ||
504 | |a Chen, W., Chu, J., Yan, P., Zhang, M., On the Fučik spectrum of the scalar p-Laplacian with indefinite integrable weights (2014) Bound. Value Prob 2014, 10, p. 34 | ||
504 | |a Courant, R., Hilbert, D., (1953) Methods of Mathematical Physics, 1. , Interscience Publishers, Inc | ||
504 | |a Cuesta, M., De Figueiredo, D., Gossez, J.-P., The beginning of the Fučik spectrum for the p-Laplacian (1999) J. Differential Equations, 159, pp. 212-238 | ||
504 | |a Dancer, E.N., On the Dirichlet problem for weakly non-linear elliptic partial differential equations (1976) Proc. Roy. Soc. Edinburgh Sect. A 1976, (77), pp. 283-300 | ||
504 | |a Dosly, O., Rehak, P., (2005) Half-Linear Differential Equations North-Holland Mathematics Studies, 202. , Elsevier | ||
504 | |a Fleckinger, J., Lapidus, M., Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights (1987) Arch. Ration. Mech. Anal, 98, pp. 329-356 | ||
504 | |a Fučik, S., Boundary value problems with jumping nonlinearities (1976) Casopis Pěst. Mat, 101, pp. 69-87 | ||
504 | |a Genoud, F., Rynne, P., Half eigenvalues and the Fučik spectrum of multi-point, boundary value problems (2012) J. Differential Equations, 252, pp. 5076-5095 | ||
504 | |a Pinasco, J.P., Lower bounds of Fučik eigenvalues of the weighted one-dimensional p-Laplacian (2004) Rend. Istit. Mat. Univ. Trieste, 36, pp. 49-64 | ||
504 | |a Pinasco, J.P., (2013) Lyapunov-Type Inequalities with Applications to Eigenvalue Problems, , Springer | ||
504 | |a Rynne, B.P., The Fučik spectrum of general Sturm-Liouville problems (2000) J. Differential Equations, 161, pp. 87-109 | ||
520 | 3 | |a In this work, we study the asymptotic behavior of the curves of the Fučík spectrum for weighted second-order linear ordinary differential equations. We prove a Weyl type asymptotic behavior of the hyperbolic type curves in the spectrum in terms of some integrals of the weights. We present an algorithm which computes the intersection of the Fučík spectrum with rays through the origin, and we compare their values with the asymptotic ones. © 2017 World Scientific Publishing Company. |l eng | |
536 | |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT 20020100100400 | ||
536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 5478/1438 | ||
536 | |a Detalles de la financiación: This work was partially supported by Universidad de Buenos Aires under grant UBACYT 20020100100400 and by CONICET (Argentina) PIP 5478/1438 | ||
593 | |a Departamento de Matemática and IMAS-CONICET, FCEN, University of Buenos Aires Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina | ||
690 | 1 | 0 | |a EIGENVALUE BOUNDS |
690 | 1 | 0 | |a FUČIK SPECTRUM |
690 | 1 | 0 | |a WEYL'S TYPE ESTIMATES |
700 | 1 | |a Salort, A.M. | |
773 | 0 | |d World Scientific Publishing Co. Pte Ltd, 2017 |g v. 19 |k n. 4 |p Commun. Contemp. Math. |x 02191997 |w (AR-BaUEN)CENRE-4244 |t Communications in Contemporary Mathematics | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84973645228&doi=10.1142%2fS0219199716500395&partnerID=40&md5=98da66f2dadd327d3f258a32eae8cd02 |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1142/S0219199716500395 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_02191997_v19_n4_p_Pinasco |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02191997_v19_n4_p_Pinasco |y Registro en la Biblioteca Digital |
961 | |a paper_02191997_v19_n4_p_Pinasco |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 75805 |