Asymptotic behavior of the curves in the Fučík spectrum

In this work, we study the asymptotic behavior of the curves of the Fučík spectrum for weighted second-order linear ordinary differential equations. We prove a Weyl type asymptotic behavior of the hyperbolic type curves in the spectrum in terms of some integrals of the weights. We present an algorit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pinasco, J.P
Otros Autores: Salort, A.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: World Scientific Publishing Co. Pte Ltd 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04673caa a22005177a 4500
001 PAPER-14852
003 AR-BaUEN
005 20230518204527.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84973645228 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Pinasco, J.P. 
245 1 0 |a Asymptotic behavior of the curves in the Fučík spectrum 
260 |b World Scientific Publishing Co. Pte Ltd  |c 2017 
506 |2 openaire  |e Política editorial 
504 |a Alif, M., Sur le spectre de Fucik du p-Laplacien avec des Poids indefinis (2002) C. R. Math. Acad. Sci. Paris, 334, pp. 1061-1066 
504 |a Alif, M., Gossez, J.-P., On the Fučik spectrum with indefinite weights (2001) Differential Integral Equations, 14, pp. 1511-1530 
504 |a Brown, B.M., Reichel, W., Computing eigenvalues and Fučik spectrum of the radially symmetric p-Laplacian (2002) J. Comput. Appl. Math, 148, pp. 183-211 
504 |a Chen, W., Chu, J., Yan, P., Zhang, M., On the Fučik spectrum of the scalar p-Laplacian with indefinite integrable weights (2014) Bound. Value Prob 2014, 10, p. 34 
504 |a Courant, R., Hilbert, D., (1953) Methods of Mathematical Physics, 1. , Interscience Publishers, Inc 
504 |a Cuesta, M., De Figueiredo, D., Gossez, J.-P., The beginning of the Fučik spectrum for the p-Laplacian (1999) J. Differential Equations, 159, pp. 212-238 
504 |a Dancer, E.N., On the Dirichlet problem for weakly non-linear elliptic partial differential equations (1976) Proc. Roy. Soc. Edinburgh Sect. A 1976, (77), pp. 283-300 
504 |a Dosly, O., Rehak, P., (2005) Half-Linear Differential Equations North-Holland Mathematics Studies, 202. , Elsevier 
504 |a Fleckinger, J., Lapidus, M., Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights (1987) Arch. Ration. Mech. Anal, 98, pp. 329-356 
504 |a Fučik, S., Boundary value problems with jumping nonlinearities (1976) Casopis Pěst. Mat, 101, pp. 69-87 
504 |a Genoud, F., Rynne, P., Half eigenvalues and the Fučik spectrum of multi-point, boundary value problems (2012) J. Differential Equations, 252, pp. 5076-5095 
504 |a Pinasco, J.P., Lower bounds of Fučik eigenvalues of the weighted one-dimensional p-Laplacian (2004) Rend. Istit. Mat. Univ. Trieste, 36, pp. 49-64 
504 |a Pinasco, J.P., (2013) Lyapunov-Type Inequalities with Applications to Eigenvalue Problems, , Springer 
504 |a Rynne, B.P., The Fučik spectrum of general Sturm-Liouville problems (2000) J. Differential Equations, 161, pp. 87-109 
520 3 |a In this work, we study the asymptotic behavior of the curves of the Fučík spectrum for weighted second-order linear ordinary differential equations. We prove a Weyl type asymptotic behavior of the hyperbolic type curves in the spectrum in terms of some integrals of the weights. We present an algorithm which computes the intersection of the Fučík spectrum with rays through the origin, and we compare their values with the asymptotic ones. © 2017 World Scientific Publishing Company.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT 20020100100400 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 5478/1438 
536 |a Detalles de la financiación: This work was partially supported by Universidad de Buenos Aires under grant UBACYT 20020100100400 and by CONICET (Argentina) PIP 5478/1438 
593 |a Departamento de Matemática and IMAS-CONICET, FCEN, University of Buenos Aires Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina 
690 1 0 |a EIGENVALUE BOUNDS 
690 1 0 |a FUČIK SPECTRUM 
690 1 0 |a WEYL'S TYPE ESTIMATES 
700 1 |a Salort, A.M. 
773 0 |d World Scientific Publishing Co. Pte Ltd, 2017  |g v. 19  |k n. 4  |p Commun. Contemp. Math.  |x 02191997  |w (AR-BaUEN)CENRE-4244  |t Communications in Contemporary Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84973645228&doi=10.1142%2fS0219199716500395&partnerID=40&md5=98da66f2dadd327d3f258a32eae8cd02  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1142/S0219199716500395  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02191997_v19_n4_p_Pinasco  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02191997_v19_n4_p_Pinasco  |y Registro en la Biblioteca Digital 
961 |a paper_02191997_v19_n4_p_Pinasco  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75805