Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles

The E7 protein from high-risk human papillomavirus is essential for cell transformation in cervical, oropharyngeal, and other HPV-related cancers, mainly through the inactivation of the retinoblastoma (Rb) tumor suppressor. Its high cysteine content (∼7%) and the observation that HPV-transformed cel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Chemes, L.B
Otros Autores: Camporeale, G., Sánchez, I.E, De Prat-Gay, G., Alonso, L.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18920caa a22015017a 4500
001 PAPER-14498
003 AR-BaUEN
005 20230518204502.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84898929294 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BICHA 
100 1 |a Chemes, L.B. 
245 1 0 |a Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles 
260 |b American Chemical Society  |c 2014 
270 1 0 |m De Prat-Gay, G.; Protein Structure-Function and Engineering Laboratory, Fundaciòn Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina; email: gpg@leloir.org.ar 
506 |2 openaire  |e Política editorial 
504 |a Zur Hausen, H., Papillomavirus infectionsî - ̧a major cause of human cancers (1996) Biochim. Biophys. Acta, 1288, pp. 55-78 
504 |a Munoz, N., Bosch, F.X., De Sanjose, S., Herrero, R., Castellsague, X., Shah, K.V., Snijders, P.J., Meijer, C.J., Epidemiologic classification of human papillomavirus types associated with cervical cancer (2003) N. Engl. J. Med., 348, pp. 518-527 
504 |a Bernard, H.U., Burk, R.D., Chen, Z., Van Doorslaer, K., Zur Hausen, H., De Villiers, E.M., Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments (2010) Virology, 401, pp. 70-79 
504 |a Schiffman, M., Herrero, R., Desalle, R., Hildesheim, A., Wacholder, S., Rodriguez, A.C., Bratti, M.C., Burk, R.D., The carcinogenicity of human papillomavirus types reflects viral evolution (2005) Virology, 337, pp. 76-84 
504 |a Doorbar, J., The papillomavirus life cycle (2005) J. Clin. Virol., 32 (SUPPL. 1), pp. 7-15 
504 |a Howley, P.M., (1996) Fields Virology, , 3 rd ed. Raven Publishers, Philadelphia 
504 |a Helt, A.M., Funk, J.O., Galloway, D.A., Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells (2002) J. Virol., 76, pp. 10559-10568 
504 |a Banerjee, N.S., Genovese, N.J., Noya, F., Chien, W.M., Broker, T.R., Chow, L.T., Conditionally activated E7 proteins of high-risk and low-risk human papillomaviruses induce S phase in postmitotic, differentiated human keratinocytes (2006) J. Virol., 80, pp. 6517-6524 
504 |a Moody, C.A., Laimins, L.A., Human papillomavirus oncoproteins: Pathways to transformation (2010) Nat. Rev. Cancer, 10, pp. 550-560 
504 |a Pim, D., Banks, L., Interaction of viral oncoproteins with cellular target molecules: Infection with high-risk vs low-risk human papillomaviruses (2010) APMIS, 118, pp. 471-493 
504 |a Dyson, N., Howley, P.M., Munger, K., Harlow, E., The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product (1989) Science, 243, pp. 934-937 
504 |a Munger, K., Howley, P.M., Human papillomavirus immortalization and transformation functions (2002) Virus Res, 89, pp. 213-228 
504 |a Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., Howley, P.M., Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product (1989) EMBO J., 8, pp. 4099-4105 
504 |a Heck, D.V., Yee, C.L., Howley, P.M., Munger, K., Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 4442-4446 
504 |a Crook, T., Morgenstern, J.P., Crawford, L., Banks, L., Continued expression of HPV-16 E7 protein is required for maintenance of the transformed phenotype of cells co-transformed by HPV-16 plus EJ-ras (1989) EMBO J., 8, pp. 513-519 
504 |a De Marco, F., Bucaj, E., Foppoli, C., Fiorini, A., Blarzino, C., Filipi, K., Giorgi, A., Perluigi, M., Oxidative stress in HPV-driven viral carcinogenesis: Redox proteomics analysis of HPV-16 dysplastic and neoplastic tissues (2012) PLoS One, 7, p. 34366 
504 |a De Marco, F., Oxidative stress and HPV carcinogenesis (2013) Viruses, 5, pp. 708-731 
504 |a Williams, V.M., Filippova, M., Soto, U., Duerksen-Hughes, P.J., HPV-DNA integration and carcinogenesis: Putative roles for inflammation and oxidative stress (2011) Future Virol., 6, pp. 45-57 
504 |a Mileo, A.M., Abbruzzese, C., Mattarocci, S., Bellacchio, E., Pisano, P., Federico, A., Maresca, V., Paggi, M.G., Human papillomavirus-16 E7 interacts with glutathione S-transferase P1 and enhances its role in cell survival (2009) PLoS One, 4, p. 7254 
504 |a Alonso, L.G., Garcia-Alai, M.M., Nadra, A.D., Lapena, A.N., Almeida, F.L., Gualfetti, P., Prat-Gay, G.D., High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners (2002) Biochemistry, 41, pp. 10510-10518 
504 |a Ohlenschlager, O., Seiboth, T., Zengerling, H., Briese, L., Marchanka, A., Ramachandran, R., Baum, M., Gorlach, M., Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7 (2006) Oncogene, 25, pp. 5953-5959 
504 |a Liu, X., Clements, A., Zhao, K., Marmorstein, R., Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor (2006) J. Biol. Chem., 281, pp. 578-586 
504 |a Garcia-Alai, M.M., Alonso, L.G., De Prat-Gay, G., The N-terminal module of HPV16 E7 is an intrinsically disordered domain that confers conformational and recognition plasticity to the oncoprotein (2007) Biochemistry, 46, pp. 10405-10412 
504 |a Clements, A., Johnston, K., Mazzarelli, J.M., Ricciardi, R.P., Marmorstein, R., Oligomerization properties of the viral oncoproteins adenovirus E1A and human papillomavirus E7 and their complexes with the retinoblastoma protein (2000) Biochemistry, 39, pp. 16033-16045 
504 |a Chemes, L.B., Glavina, J., Alonso, L.G., Marino-Buslje, C., De Prat-Gay, G., Sanchez, I.E., Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein (2012) PLoS One, 7, pp. e47661 
504 |a McIntyre, M.C., Frattini, M.G., Grossman, S.R., Laimins, L.A., Human papillomavirus type 18 E7 protein requires intact Cys-X-X-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding (1993) J. Virol., 67, pp. 3142-3150 
504 |a Alonso, L.G., Garcia-Alai, M.M., Smal, C., Centeno, J.M., Iacono, R., Castano, E., Gualfetti, P., De Prat-Gay, G., The HPV16 E7 viral oncoprotein self-assembles into defined spherical oligomers (2004) Biochemistry, 43, pp. 3310-3317 
504 |a Patrick, D.R., Oliff, A., Heimbrook, D.C., Identification of a novel retinoblastoma gene product binding site on human papillomavirus type 16 E7 protein (1994) J. Biol. Chem., 269, pp. 6842-6850 
504 |a Miseta, A., Csutora, P., Relationship between the occurrence of cysteine in proteins and the complexity of organisms (2000) Mol. Biol. Evol., 17, pp. 1232-1239 
504 |a Human papillomavirus (1995) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 64, pp. 1-409. , World Health Organization International Agency for Research on Cancer, World Health Organization, Geneva 
504 |a Marino, S.M., Gladyshev, V.N., Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces (2010) J. Mol. Biol., 404, pp. 902-916 
504 |a Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., Denicola, A., Factors affecting protein thiol reactivity and specificity in peroxide reduction (2011) Chem. Res. Toxicol., 24, pp. 434-450 
504 |a Pace, N.J., Weerapana, E., Diverse functional roles of reactive cysteines (2013) ACS Chem. Biol., 8, pp. 283-296 
504 |a Thamsen, M., Jakob, U., The redoxome: Proteomic analysis of cellular redox networks (2011) Curr. Opin. Chem. Biol., 15, pp. 113-119 
504 |a Reddie, K.G., Carroll, K.S., Expanding the functional diversity of proteins through cysteine oxidation (2008) Curr. Opin. Chem. Biol., 12, pp. 746-754 
504 |a Pimentel, D., Haeussler, D.J., Matsui, R., Burgoyne, J.R., Cohen, R.A., Bachschmid, M.M., Regulation of cell physiology and pathology by protein S-glutathionylation: Lessons learned from the cardiovascular system (2012) Antioxid. Redox Signal., 16, pp. 524-542 
504 |a Anathy, V., Roberson, E.C., Guala, A.S., Godburn, K.E., Budd, R.C., Janssen-Heininger, Y.M., Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death (2012) Antioxid. Redox Signal., 16, pp. 496-505 
504 |a Tanner, J.J., Parsons, Z.D., Cummings, A.H., Zhou, H., Gates, K.S., Redox regulation of protein tyrosine phosphatases: Structural and chemical aspects (2011) Antioxid. Redox Signal., 15, pp. 77-97 
504 |a Neumann, C.A., Cao, J., Manevich, Y., Peroxiredoxin 1 and its role in cell signaling (2009) Cell Cycle, 8, pp. 4072-4078 
504 |a Bulaj, G., Kortemme, T., Goldenberg, D.P., Ionization-reactivity relationships for cysteine thiols in polypeptides (1998) Biochemistry, 37, pp. 8965-8972 
504 |a Gilbert, H.F., Thiol/disulfide exchange equilibria and disulfide bond stability (1995) Methods Enzymol., 251, pp. 8-28 
504 |a Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage (1970) Nature, 227, pp. 680-685 
504 |a Hunt, J.B., Neece, S.H., Ginsburg, A., The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase (1985) Anal. Biochem., 146, pp. 150-157 
504 |a Ellman, G., Lysko, H., A precise method for the determination of whole blood and plasma sulfhydryl groups (1979) Anal. Biochem., 93, pp. 98-102 
504 |a Chemes, L.B., Sanchez, I.E., Smal, C., De Prat-Gay, G., Targeting mechanism of the retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural modularity, intrinsic disorder and phosphorylation of human papillomavirus E7 (2010) FEBS J., 277, pp. 973-988 
504 |a Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797 
504 |a Sali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J. Mol. Biol., 234, pp. 779-815 
504 |a Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., Sali, A., (2006) Current Protocols in Bioinformatics, , Comparative protein structure modeling using Modeller, in (Baxevanis, D. et al. Eds.) Chapter 5, Unit 5.6, Wiley, New York 
504 |a Kabsch, W., Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features (1983) Biopolymers, 22, pp. 2577-2637 
504 |a Morgan, B., Ezerina, D., Amoako, T.N., Riemer, J., Seedorf, M., Dick, T.P., Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis (2013) Nat. Chem. Biol., 9, pp. 119-125 
504 |a Veal, E.A., Day, A.M., Morgan, B.A., Hydrogen peroxide sensing and signaling (2007) Mol. Cell, 26, pp. 1-14 
504 |a Stadtman, E.R., Berlett, B.S., Reactive oxygen-mediated protein oxidation in aging and disease (1998) Drug Metab. Rev., 30, pp. 225-243 
504 |a Chemes, L.B., Sanchez, I.E., De Prat-Gay, G., Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target (2011) J. Mol. Biol., 412, pp. 267-284 
504 |a Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M., In-gel digestion for mass spectrometric characterization of proteins and proteomes (2006) Nat. Protoc., 1, pp. 2856-2860 
504 |a Phelps, W.C., Munger, K., Yee, C.L., Barnes, J.A., Howley, P.M., Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein (1992) J. Virol., 66, pp. 2418-2427 
504 |a Todorovic, B., Massimi, P., Hung, K., Shaw, G.S., Banks, L., Mymryk, J.S., Systematic analysis of the amino acid residues of human papillomavirus type 16 E7 conserved region 3 involved in dimerization and transformation (2011) J. Virol., 85, pp. 10048-10057 
504 |a Dong, W.L., Caldeira, S., Sehr, P., Pawlita, M., Tommasino, M., Determination of the binding affinity of different human papillomavirus E7 proteins for the tumour suppressor pRb by a plate-binding assay (2001) J. Virol. Methods, 98, pp. 91-98 
504 |a Ruden, D.M., Garfinkel, M.D., Sollars, V.E., Lu, X., Waddingtons widget: Hsp90 and the inheritance of acquired characters (2003) Sem. Cell Dev. Biol., 14, pp. 301-310 
504 |a Jakob, U., Eser, M., Bardwell, J.C., Redox switch of hsp33 has a novel zinc-binding motif (2000) J. Biol. Chem., 275, pp. 38302-38310 
504 |a Jakob, U., Muse, W., Eser, M., Bardwell, J.C., Chaperone activity with a redox switch (1999) Cell, 96, pp. 341-352 
504 |a Bourles, E., Isaac, M., Lebrun, C., Latour, J.M., Seneque, O., Oxidation of Zn(Cys)4 zinc finger peptides by O2 and H2O2: Products, mechanism and kinetics (2011) Chemistry, 17, pp. 13762-13772 
504 |a Christman, M.F., Storz, G., Ames, B.N., OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins (1989) Proc. Natl. Acad. Sci. U.S.A., 86, pp. 3484-3488 
504 |a Choi, H., Kim, S., Mukhopadhyay, P., Cho, S., Woo, J., Storz, G., Ryu, S.E., Structural basis of the redox switch in the OxyR transcription factor (2001) Cell, 105, pp. 103-113 
504 |a Littler, D.R., Harrop, S.J., Fairlie, W.D., Brown, L.J., Pankhurst, G.J., Pankhurst, S., Demaere, M.Z., Curmi, P.M., The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition (2004) J. Biol. Chem., 279, pp. 9298-9305 
504 |a Marino, S.M., Gladyshev, V.N., Analysis and functional prediction of reactive cysteine residues (2012) J. Biol. Chem., 287, pp. 4419-4425 
504 |a Choi, J., Choi, S., Choi, J., Cha, M.K., Kim, I.H., Shin, W., Crystal structure of Escherichia coli thiol peroxidase in the oxidized state: Insights into intramolecular disulfide formation and substrate binding in atypical 2-Cys peroxiredoxins (2003) J. Biol. Chem., 278, pp. 49478-49486 
504 |a Hall, A., Nelson, K., Poole, L.B., Karplus, P.A., Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins (2011) Antioxid. Redox Signal., 15, pp. 795-815 
504 |a Fomenko, D.E., Gladyshev, V.N., Identity and functions of CxxC-derived motifs (2003) Biochemistry, 42, p. 11214 
520 3 |a The E7 protein from high-risk human papillomavirus is essential for cell transformation in cervical, oropharyngeal, and other HPV-related cancers, mainly through the inactivation of the retinoblastoma (Rb) tumor suppressor. Its high cysteine content (∼7%) and the observation that HPV-transformed cells are under oxidative stress prompted us to investigate the redox properties of the HPV16 E7 protein under biologically compatible oxidative conditions. The seven cysteines in HPV16 E7 remain reduced in conditions resembling the basal reduced state of a cell. However, under oxidative stress, a stable disulfide bridge forms between cysteines 59 and 68. Residue 59 has a protective effect on the other cysteines, and its mutation leads to an overall increase in the oxidation propensity of E7, including cysteine 24 central to the Rb binding motif. Gluthationylation of Cys 24 abolishes Rb binding, which is reversibly recovered upon reduction. Cysteines 59 and 68 are located 18.6 Å apart, and the formation of the disulfide bridge leads to a large structural rearrangement while retaining strong Zn association. These conformational and covalent changes are fully reversible upon restoration of the reductive environment. In addition, this is the first evidence of an interaction between the N-terminal intrinsically disordered and the C-terminal globular domains, known to be highly and separately conserved among human papillomaviruses. The significant conservation of such noncanonical cysteines in HPV E7 proteins leads us to propose a functional redox activity. Such an activity adds to the previously discovered chaperone activity of E7 and supports the picture of a moonlighting pathological role of this paradigmatic viral oncoprotein. © 2014 American Chemical Society.  |l eng 
593 |a Protein Structure-Function and Engineering Laboratory, Fundaciòn Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina 
593 |a Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales and IQUIBICEN-CONICET, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina 
690 1 0 |a COVALENT BONDS 
690 1 0 |a PROTEINS 
690 1 0 |a REDOX REACTIONS 
690 1 0 |a RUBIDIUM 
690 1 0 |a TISSUE CULTURE 
690 1 0 |a ZINC 
690 1 0 |a CELL TRANSFORMATION 
690 1 0 |a CHAPERONE ACTIVITY 
690 1 0 |a DISULFIDE BRIDGE 
690 1 0 |a HUMAN PAPILLOMAVIRUS 
690 1 0 |a OXIDATIVE CONDITIONS 
690 1 0 |a PROTECTIVE EFFECTS 
690 1 0 |a RETINOBLASTOMA TUMORS 
690 1 0 |a STRUCTURAL REARRANGEMENT 
690 1 0 |a AMINO ACIDS 
690 1 0 |a AMINO ACID MOTIFS 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a CYSTEINE 
690 1 0 |a HUMAN PAPILLOMAVIRUS 16 
690 1 0 |a HUMANS 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PAPILLOMAVIRUS E7 PROTEINS 
690 1 0 |a PAPILLOMAVIRUS INFECTIONS 
690 1 0 |a SEQUENCE ALIGNMENT 
690 1 0 |a ZINC FINGERS 
700 1 |a Camporeale, G. 
700 1 |a Sánchez, I.E. 
700 1 |a De Prat-Gay, G. 
700 1 |a Alonso, L.G. 
773 0 |d American Chemical Society, 2014  |g v. 53  |h pp. 1680-1696  |k n. 10  |p Biochemistry  |x 00062960  |w (AR-BaUEN)CENRE-755  |t Biochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898929294&doi=10.1021%2fbi401562e&partnerID=40&md5=59cfefde0e1658e108a2c1d96fc7114c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/bi401562e  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00062960_v53_n10_p1680_Chemes  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v53_n10_p1680_Chemes  |y Registro en la Biblioteca Digital 
961 |a paper_00062960_v53_n10_p1680_Chemes  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75451