The K-theory of toric varieties in positive characteristic

We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cortiñas, G.
Otros Autores: Haesemeyer, C., Walker, M.E, Weibel, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Ltd 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06371caa a22006497a 4500
001 PAPER-14311
003 AR-BaUEN
005 20230518204448.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84894737501 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cortiñas, G. 
245 1 4 |a The K-theory of toric varieties in positive characteristic 
260 |b John Wiley and Sons Ltd  |c 2014 
506 |2 openaire  |e Política editorial 
504 |a Artin, M., Grothendieck, A., Verdier, J.L., (1963) Théorie des topos et cohomologie étale des schémas, p. 270. , Tome 2 (Springer, Berlin, 1972). Séminaire de Géométrie Algébrique du Bois-Marie (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics 
504 |a Artin, M., Mazur, B., Etale homotopy (1969) Lecture Notes in Mathematics, 100. , (Springer, Berlin,) 
504 |a Bökstedt, M., Hsiang, W.-C., Madsen, I., The cyclotomic trace and algebraic K-theory of spaces (1993) Invent. Math., 111, pp. 465-539 
504 |a Bousfield, A., Kan, D., (1972) Homotopy limits completions and localizations, Lecture Notes in Mathematics, 304. , (Springer, Berlin,) 
504 |a Chu, C., Lorscheid, O., Santhanam, R., Sheaves and K-theory for F1-schemes (2012) Adv. Math., 229, pp. 2239-2286 
504 |a Cortiñas, G., Haesemeyer, C., Schlichting, M., Weibel, C., Cyclic homology cdh-cohomology and negative K-theory (2008) Ann. Math., 167, pp. 549-563 
504 |a Cortiñas, G., Haesemeyer, C., Walker, M., Weibel, C., K-regularity, cdh-fibrant Hochschild homology, and a conjecture of Vorst (2008) J. AMS, 21, pp. 547-561 
504 |a Cortiñas, G., Haesemeyer, C., Walker, M., Weibel, C., The K-theory of toric varieties (2009) Trans. AMS, 361, pp. 3325-3341 
504 |a Cortiñas, G., Haesemeyer, C., Walker, M., Weibel, C., Toric Varieties, Monoid Schemes and cdh descent (2013) J. Reine Angew. Math., , doi:10.1515/crelle-2012-0123 
504 |a Danilov, V., de Rham complex on toroidal variety (1991) Lecture Notes in Mathematics, 1479, pp. 26-38. , (Springer, Berlin,) 
504 |a Dwyer, W.G., Hopkins, M.J., Kan, D.M., The homotopy theory of cyclic sets (1985) Trans. AMS, 291, pp. 281-289 
504 |a Dunn, G., Dihedral and quaternionic homology and mapping spaces (1989) K-theory, 3, pp. 141-161 
504 |a Fiedorowicz, Z., Gajda, W., The S1-CW decomposition of the geometric realization of a cyclic set (1994) Fund. Math., 145, pp. 91-100 
504 |a Fulton, W., Introduction to toric varieties (1993) Annals of Mathematics Studies, 131. , (Princeton University Press, Princeton, NJ,) 
504 |a Geisser, T., Hesselholt, L., (1999) Topological cyclic homology of schemes, 67, pp. 41-87. , Algebraic K-theory (Seattle, WA, 1997), Proceedings of Symposia in Pure Mathematics (American Mathematical Society, Providence, RI,) 
504 |a Gubeladze, J., The nilpotence conjecture in K-theory of toric varieties (2005) Invent. Math., 160, pp. 173-216 
504 |a Gubeladze, J., Global coefficient ring in the nilpotence conjecture (2008) Trans. AMS, 136, pp. 499-503 
504 |a Hesselholt, L., Madsen, I., On the K-theory of finite algebras over Witt vectors of perfect fields (1997) Topology, 36, pp. 29-101 
504 |a Jardine, J.F., Stable homotopy theory of simplicial presheaves (1987) Canad. J. Math., 39, pp. 733-747 
504 |a Lewis, L.G., May, J.P., Steinberger, M., Equivariant stable homotopy theory (1986) Lecture Notes in Mathematics, 1213. , (Springer, Berlin,) 
504 |a Loday, J.L., (1992) Cyclic homology, Grundlehren der mathematischen Wissenschaften, 301. , (Springer, Berlin,) 
504 |a Rognes, J., Topological logarithmic structures (2009) New topological contexts for Galois theory and algebraic geometry (BIRS 2008), 16, pp. 401-544. , Geometry & Topology Monographs (Geom. Topol. Publ, Coventry,) 
504 |a Voevodsky, V., Homotopy theory of simplicial sheaves in completely decomposable topologies (2010) J. Pure Appl. Algebra, 214, pp. 1384-1398 
504 |a Weibel, C.A., Homotopy algebraic K-theory (1989) Algebraic K-theory and algebraic number theory (Honolulu 1987), 83, pp. 461-488. , Contemporary Mathematics (American Mathematical Society, Providence, RI,) 
504 |a Weibel, C.A., (1994) An introduction to homological algebra, , (Cambridge University Press, Cambridge,) 
520 3 |a We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze. © 2013 London Mathematical Society.  |l eng 
536 |a Detalles de la financiación: National Science Foundation, NSF, DMS-0966600 
536 |a Detalles de la financiación: National Science Foundation, NSF, DMS-0966821 
593 |a Dept. Matemática-Inst. Santaló, FCEyN Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Department of Mathematics, University of California, Los Angeles, CA 90095., United States 
593 |a Department of Mathematics, University of Nebraska - Lincoln, Lincoln, NE 68588, United States 
593 |a Department of Mathematics, Rutgers University, New Brunswick, NJ 08901, United States 
700 1 |a Haesemeyer, C. 
700 1 |a Walker, M.E. 
700 1 |a Weibel, C. 
773 0 |d John Wiley and Sons Ltd, 2014  |g v. 7  |h pp. 247-286  |k n. 1  |p J. Topol.  |x 17538416  |t Journal of Topology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84894737501&doi=10.1112%2fjtopol%2fjtt026&partnerID=40&md5=c7b3664d6eddbb32bdfd58b32ab84afc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1112/jtopol/jtt026  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_17538416_v7_n1_p247_Cortinas  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17538416_v7_n1_p247_Cortinas  |y Registro en la Biblioteca Digital 
961 |a paper_17538416_v7_n1_p247_Cortinas  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion