The K-theory of toric varieties in positive characteristic
We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result w...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
John Wiley and Sons Ltd
2014
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 06371caa a22006497a 4500 | ||
---|---|---|---|
001 | PAPER-14311 | ||
003 | AR-BaUEN | ||
005 | 20230518204448.0 | ||
008 | 190411s2014 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-84894737501 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Cortiñas, G. | |
245 | 1 | 4 | |a The K-theory of toric varieties in positive characteristic |
260 | |b John Wiley and Sons Ltd |c 2014 | ||
506 | |2 openaire |e Política editorial | ||
504 | |a Artin, M., Grothendieck, A., Verdier, J.L., (1963) Théorie des topos et cohomologie étale des schémas, p. 270. , Tome 2 (Springer, Berlin, 1972). Séminaire de Géométrie Algébrique du Bois-Marie (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics | ||
504 | |a Artin, M., Mazur, B., Etale homotopy (1969) Lecture Notes in Mathematics, 100. , (Springer, Berlin,) | ||
504 | |a Bökstedt, M., Hsiang, W.-C., Madsen, I., The cyclotomic trace and algebraic K-theory of spaces (1993) Invent. Math., 111, pp. 465-539 | ||
504 | |a Bousfield, A., Kan, D., (1972) Homotopy limits completions and localizations, Lecture Notes in Mathematics, 304. , (Springer, Berlin,) | ||
504 | |a Chu, C., Lorscheid, O., Santhanam, R., Sheaves and K-theory for F1-schemes (2012) Adv. Math., 229, pp. 2239-2286 | ||
504 | |a Cortiñas, G., Haesemeyer, C., Schlichting, M., Weibel, C., Cyclic homology cdh-cohomology and negative K-theory (2008) Ann. Math., 167, pp. 549-563 | ||
504 | |a Cortiñas, G., Haesemeyer, C., Walker, M., Weibel, C., K-regularity, cdh-fibrant Hochschild homology, and a conjecture of Vorst (2008) J. AMS, 21, pp. 547-561 | ||
504 | |a Cortiñas, G., Haesemeyer, C., Walker, M., Weibel, C., The K-theory of toric varieties (2009) Trans. AMS, 361, pp. 3325-3341 | ||
504 | |a Cortiñas, G., Haesemeyer, C., Walker, M., Weibel, C., Toric Varieties, Monoid Schemes and cdh descent (2013) J. Reine Angew. Math., , doi:10.1515/crelle-2012-0123 | ||
504 | |a Danilov, V., de Rham complex on toroidal variety (1991) Lecture Notes in Mathematics, 1479, pp. 26-38. , (Springer, Berlin,) | ||
504 | |a Dwyer, W.G., Hopkins, M.J., Kan, D.M., The homotopy theory of cyclic sets (1985) Trans. AMS, 291, pp. 281-289 | ||
504 | |a Dunn, G., Dihedral and quaternionic homology and mapping spaces (1989) K-theory, 3, pp. 141-161 | ||
504 | |a Fiedorowicz, Z., Gajda, W., The S1-CW decomposition of the geometric realization of a cyclic set (1994) Fund. Math., 145, pp. 91-100 | ||
504 | |a Fulton, W., Introduction to toric varieties (1993) Annals of Mathematics Studies, 131. , (Princeton University Press, Princeton, NJ,) | ||
504 | |a Geisser, T., Hesselholt, L., (1999) Topological cyclic homology of schemes, 67, pp. 41-87. , Algebraic K-theory (Seattle, WA, 1997), Proceedings of Symposia in Pure Mathematics (American Mathematical Society, Providence, RI,) | ||
504 | |a Gubeladze, J., The nilpotence conjecture in K-theory of toric varieties (2005) Invent. Math., 160, pp. 173-216 | ||
504 | |a Gubeladze, J., Global coefficient ring in the nilpotence conjecture (2008) Trans. AMS, 136, pp. 499-503 | ||
504 | |a Hesselholt, L., Madsen, I., On the K-theory of finite algebras over Witt vectors of perfect fields (1997) Topology, 36, pp. 29-101 | ||
504 | |a Jardine, J.F., Stable homotopy theory of simplicial presheaves (1987) Canad. J. Math., 39, pp. 733-747 | ||
504 | |a Lewis, L.G., May, J.P., Steinberger, M., Equivariant stable homotopy theory (1986) Lecture Notes in Mathematics, 1213. , (Springer, Berlin,) | ||
504 | |a Loday, J.L., (1992) Cyclic homology, Grundlehren der mathematischen Wissenschaften, 301. , (Springer, Berlin,) | ||
504 | |a Rognes, J., Topological logarithmic structures (2009) New topological contexts for Galois theory and algebraic geometry (BIRS 2008), 16, pp. 401-544. , Geometry & Topology Monographs (Geom. Topol. Publ, Coventry,) | ||
504 | |a Voevodsky, V., Homotopy theory of simplicial sheaves in completely decomposable topologies (2010) J. Pure Appl. Algebra, 214, pp. 1384-1398 | ||
504 | |a Weibel, C.A., Homotopy algebraic K-theory (1989) Algebraic K-theory and algebraic number theory (Honolulu 1987), 83, pp. 461-488. , Contemporary Mathematics (American Mathematical Society, Providence, RI,) | ||
504 | |a Weibel, C.A., (1994) An introduction to homological algebra, , (Cambridge University Press, Cambridge,) | ||
520 | 3 | |a We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze. © 2013 London Mathematical Society. |l eng | |
536 | |a Detalles de la financiación: National Science Foundation, NSF, DMS-0966600 | ||
536 | |a Detalles de la financiación: National Science Foundation, NSF, DMS-0966821 | ||
593 | |a Dept. Matemática-Inst. Santaló, FCEyN Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina | ||
593 | |a Department of Mathematics, University of California, Los Angeles, CA 90095., United States | ||
593 | |a Department of Mathematics, University of Nebraska - Lincoln, Lincoln, NE 68588, United States | ||
593 | |a Department of Mathematics, Rutgers University, New Brunswick, NJ 08901, United States | ||
700 | 1 | |a Haesemeyer, C. | |
700 | 1 | |a Walker, M.E. | |
700 | 1 | |a Weibel, C. | |
773 | 0 | |d John Wiley and Sons Ltd, 2014 |g v. 7 |h pp. 247-286 |k n. 1 |p J. Topol. |x 17538416 |t Journal of Topology | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84894737501&doi=10.1112%2fjtopol%2fjtt026&partnerID=40&md5=c7b3664d6eddbb32bdfd58b32ab84afc |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1112/jtopol/jtt026 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_17538416_v7_n1_p247_Cortinas |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17538416_v7_n1_p247_Cortinas |y Registro en la Biblioteca Digital |
961 | |a paper_17538416_v7_n1_p247_Cortinas |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion |