Sorption isotherms of water in nanopores: Relationship between hydropohobicity, adsorption pressure, and hysteresis

The motivation of this study is to elucidate how the condensation and desorption pressures in water sorption isotherms depend on the contact angle. This question is investigated for cylindrical pores of 2.8 nm diameter by means of molecular dynamics simulations in the grand canonical ensemble, in co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Factorovich, M.H
Otros Autores: Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17162caa a22014297a 4500
001 PAPER-14150
003 AR-BaUEN
005 20230518204437.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84904962597 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Factorovich, M.H. 
245 1 0 |a Sorption isotherms of water in nanopores: Relationship between hydropohobicity, adsorption pressure, and hysteresis 
260 |b American Chemical Society  |c 2014 
270 1 0 |m Scherlis, D.A.; Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; email: damian@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Cohen, L.H., Hysteresis and the Capillary Theory of Adsorption of Vapors (1944) J. Am. Chem. Soc., 66, pp. 98-105 
504 |a Emmett, P.H., Adsorption and Pore-Size Measurements on Charcoals and Whetlerites (1948) Chem. Rev., 43, pp. 69-148 
504 |a Katz, S.M., Permanent Hysteresis in Physical Adsorption (1949) J. Phys. Colloid Chem., 53, pp. 1166-1186 
504 |a Everett, D.H., Whitton, W.I., A General Approach to Hysteresis (1952) T. Faraday Soc., 48, p. 749 
504 |a Everett, D.H., Haynes, J.M., Model Studies of Capillary Condensation. 1. Cylindrical Pore Model with Zero Contact Angle (1972) J. Colloid Interface Sci., 38, pp. 125-137 
504 |a Derjaguin, B.V., Prog. Surf. Sci., 45 
504 |a Defay, R., Prigogine, I., (1966) Surface Tension and Adsorption, , 1 st ed. Longmans: London 
504 |a Rouquerol, F., Rouquerol, J., Sing, K., (1999) Adsorption by Powders and Porous Solids, , 1 st ed. Academic Press: New York 
504 |a Thommes, M., Physical Adsorption Characterization of Nanoporous Materials (2010) Chem. Ing. Technol., 82, pp. 1059-1073 
504 |a Inagaki, S., Fukushima, Y., Adsorption of Water Vapor and Hydrophobicity of Ordered Mesoporous Silica, FSM-16 (1998) Microporous Mesoporous Mater., 21, pp. 667-672 
504 |a Gregg, S.J., Sing, K.S.W., (1982) Adsorption, Surface Area and Porosity, , 2nd ed. Academic Press: New York 
504 |a Branton, P.J., Hall, P.G., Treguer, M., Sing, K.S.W., Adsorption of Carbon Dioxide, Sulfur Dioxide and Water Vapour by MCM-41, a Model Mesoporous Adsorbent (1995) J. Chem. Soc., Faraday Trans., 91, pp. 2041-2043 
504 |a Llewellyn, P.L., Schueth, F., Grillet, Y., Rouquerol, F., Rouquerol, J., Unger, K.K., Water Sorption on Mesoporous Aluminosilicate MCM-41 (1995) Langmuir, 11, pp. 574-577 
504 |a Llewellyn, P., Grillet, Y., Schuth, F., Reichert, H., Effect of Pore Size on Adsorbate Condensation and Hysteresis Within a Potential Model Adsorbent: M41S (1994) Microporous Mater., 3, pp. 345-349 
504 |a Ravikovitch, P.I., Domhnaill S C, O., Neimark, A.V., Schuth, F.S., Unger, K.K., Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41 (1995) Langmuir, 11, pp. 4765-4772 
504 |a Matsumoto, A., Sasaki, T., Nishimiya, N., Tsutsumi, K., Evaluation of the Hydrophobic Properties of Mesoporous FSM-16 by Means of Adsorption Calorimetry (2001) Langmuir, 17, pp. 47-51 
504 |a Takahara, S., Nakano, M., Kittaka, S., Kuroda, Y., Mori, T., Hamano, H., Yamaguchi, T.J., Neutron Scattering Study on Dynamics of Water Molecules in MCM-41 (1999) J. Phys. Chem. B, 103, pp. 5814-5819 
504 |a Grunberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G., Limbach, H.-H., Buntkowsky, G., Hydrogen Bonding of Water Confined in Mesoporous Silica MCM-41 and SBA-15 Studied by 1H Solid-State NMR (2004) Chem.-Eur. J., 10, pp. 5689-5696 
504 |a Brennan, J.K., Bandosz, T.J., Thomson, K.T., Gubbins, K.E., Water in Porous Carbons (2001) Colloids Surf. A-Physicochem. Eng. Aspects, 187, pp. 539-568 
504 |a Easton, E.B., Machin, W.D., Adsorption of Water Vapor on a Graphitized Carbon Black (2000) J. Colloid Interface Sci., 231, pp. 204-206 
504 |a Tao, Y., Muramatsu, H., Endo, M., Kaneko, K., Evidence of Water Adsorption in Hydrophobic Nanospaces of Highly Pure Double-Walled Carbon Nanotubes (2010) J. Am. Chem. Soc., 132, pp. 1214-1215 
504 |a Heffelfinger, G.S., Van Swol, F., Gubbins, K.E., Adsorption Hysteresis in Narrow Pores (1988) J. Chem. Phys., 89, pp. 5202-5205 
504 |a Ball, P.C., Evans, R., Temperature Dependence of Gas Adsorption on a Mesoporous Solid: Capillary Criticality and Hysteresis (1989) Langmuir, 5, pp. 714-723 
504 |a Peterson, B.K., Heffelfinger, G.S., Gubbins, K.E., Van Swol, F., Layering Transitions in Cylindrical Pores (1990) J. Chem. Phys., 93, pp. 679-685 
504 |a Papadopoulou, A., Van Swol, F., Marini Bettolo Marconi, U., Pore-End Effects on Adsorption Hysteresis in Cylindrical and Slitlike Pores (1992) J. Chem. Phys., 97, pp. 6942-6952 
504 |a Votyakov, E.V., Tovbin, Y.K., Macelroy, J.M.D., Roche, A., A Theoretical Study of the Phase Diagrams of Simple Fluids Confined within Narrow Pores (1999) Langmuir, 15, pp. 5713-5721 
504 |a Monson, P., Understanding Adsorption/Desorption Hysteresis for Fluids in Mesoporous Materials Using Simple Molecular Models and Classical Density Functional Theory (2012) Micropor. Mesopor. Mater., 160, pp. 47-66 
504 |a Gubbins, K.E., Liu, Y.-C., Moore, J.D., Palmer, J.C., The Role of Molecular Modeling in Confined Systems: Impact and Prospects (2011) Phys. Chem. Chem. Phys., 13, pp. 58-85 
504 |a Coasne, B., Hung, F.R., Pellenq, R.J.-M., Siperstein, F.R., Gubbins, K.E., Adsorption of Simple Gases in MCM-41 Materials: The Role of Surface Roughness (2006) Langmuir, 22, pp. 194-202 
504 |a Fan, C., Do, D.D., Nicholson, D., On the Cavitation and Pore Blocking in Slit-Shaped Ink-Bottle Pores (2011) Langmuir, 27, pp. 3511-3526 
504 |a Smit, B., Siepmann, J.I., Simulating the Adsorption of Alkanes in Zeolites (1994) Science, 264, pp. 1118-1120 
504 |a Sant, M., Leyssale, J.-M., Papadopoulos, G.K., Theodorou, D.N., Molecular Dynamics of Carbon Dioxide, Methane and Their Mixtures in a Zeolite Possessing Two Independent Pore Networks as Revealed by Computer Simulations (2009) J. Phys. Chem. B, 113, pp. 13761-13767 
504 |a Smit, B., Maesen, T.L.M., Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity (2008) Chem. Rev., 108, pp. 4125-4184 
504 |a Brovchenko, I., Geiger, A., Oleinikova, A., Water in Nanopores. I. Coexistence Curves from Gibbs Ensemble Monte Carlo Simulations (2004) J. Chem. Phys., 120, pp. 1958-1972 
504 |a Shirono, K., Daiguji, H., Molecular Simulation of the Phase Behavior of Water Confined in Silica Nanopores (2007) J. Phys. Chem. C, 111, pp. 7938-7946 
504 |a Siboulet, B., Coasne, B., Dufrêche, J.-F., Turq, P., Hydrophobic Transition in Porous Amorphous Silica (2011) J. Phys. Chem. B, 115, pp. 7881-7886 
504 |a Schreiber, A., Bock, H., Schoen, M., Findenegg, G.H., Effect of Surface Modification on the Pore Condensation of Fluids: Experimental Results and Density Functional Theory (2002) Mol. Phys., 100, pp. 2097-2107 
504 |a Molinero, V., Moore, E.B., Water Modeled As an Intermediate Element between Carbon and Silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016 
504 |a De La Llave, E., Molinero, V., Scherlis, D.A., Water Filling of Hydrophilic Nanopores (2010) J. Chem. Phys., 133, p. 34513 
504 |a De La Llave, E., Molinero, V., Scherlis, D.A., Role of Confinement and Surface Affinity on Filling Mechanisms and Sorption Hysteresis of Water in Nanopores (2011) J. Phys. Chem. C, 116, pp. 1833-1840 
504 |a Solveyra, E.G., De La Llave, E., Soler-Illia, G.J.A.A., Molinero, V., Scherlis, D.A., Structure, Dynamics, and Phase Behavior of Water in TiO2 Nanopores (2013) J. Phys. Chem. C, 117, pp. 3330-3342 
504 |a Muller, E.A., Rull, L.F., Vega, L.F., Gubbins, K.E., Adsorption of Water on Activated Carbons: A Molecular Simulation Study (1996) J. Phys. Chem., 100, pp. 1189-1196 
504 |a Brennan, J.K., Thomson, K.T., Gubbins, K.E., Adsorption of Water in Activated Carbons: Effects of Pore Blocking and Connectivity (2002) Langmuir, 18, pp. 5438-5447 
504 |a Striolo, A., Chialvo, A.A., Cummings, P.T., Gubbins, K.E., Simulated Water Adsorption in Chemically Heterogeneous Carbon Nanotubes (2006) J. Chem. Phys., 124, p. 74710 
504 |a Liu, J.-C., Monson, P.A., Does Water Condense in Carbon Pores? (2005) Langmuir, 21, pp. 10219-10225 
504 |a Liu, J.-C., Monson, P.A., Monte Carlo Simulation Study of Water Adsorption in Activated Carbon (2006) Ind. Eng. Chem. Res., 45, pp. 5649-5656 
504 |a Monson, P.A., Contact Angles, Pore Condensation, and Hysteresis: Insights from a Simple Molecular Model (2008) Langmuir, 24, pp. 12295-12302 
504 |a Frenkel, D., Smit, B., (2002) Understanding Molecular Simulation, , 2 nd ed. Academic Press: New York 
504 |a Heffelfinger, G.S., Van Swol, F., Diffusion in Lennard-Jones Fluids Using Dual Control Volume Grand Canonical Molecular Dynamics Simulation (DCV-GCMD) (1994) J. Chem. Phys., 100, pp. 7548-7552 
504 |a Arya, G., Chang, H.-S., Maginn, E.J., A Critical Comparison of Equilibrium, Non-equilibrium and Boundary-Driven Molecular Dynamics Techniques for Studying Transport in Microporous Materials (2001) J. Chem. Phys., 115, pp. 8112-8124 
504 |a Cracknell, R.F., Nicholson, D., Quirke, N., Direct Molecular Dynamics Simulation of Flow Down a Chemical Potential Gradient in a Slit-Shaped Micropore (1995) Phys. Rev. Lett., 74, pp. 2463-2466 
504 |a Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995) J. Comput. Phys., 117, pp. 1-19 
504 |a Moore, E.B., Molinero, V., Structural Transformation in Supercooled Water Controls the Crystallization Rate of Ice (2011) Nature, 479, pp. 506-508 
504 |a Moore, E.B., Allen, J.T., Molinero, V., Liquid-Ice Coexistence below the Melting Temperature for Water Confined in Hydrophilic and Hydrophobic Nanopores (2012) J. Phys. Chem. C, 116, pp. 7507-7514 
504 |a Factorovich, M., Molinero, V., Scherlis, D.A., A Simple Grand Canonical Approach to Compute the Vapor Pressure of Bulk and Finite Size Systems (2014) J. Chem. Phys., p. 064111 
504 |a Factorovich, M., Molinero, V., Scherlis, D.A., Vapor Pressure of Water Nanodroplets (2014) J. Am. Chem. Soc., pp. 4508-4514 
504 |a Giovambattista, N., Debenedetti, P.G., Rosky, P.J., Effect of Surface Polarity on Water Contact Angle and Interfacial Hydration Structure (2007) J. Phys. Chem. B, 111, pp. 9581-9587 
504 |a Giovambattista, N., Rosky, P.J., Debenedetti, P.G., Effect of Temperature on the Structure and Phase Behavior of Water Confined by Hydrophobic, Hydrophilic, and Heterogeneous Surfaces (2009) J. Phys. Chem. B, 113, pp. 13723-13734 
504 |a Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Koumoutsakos, P., On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes (2003) J. Phys. Chem. B, 107, pp. 1345-1352 
504 |a CRC Handbook of Chemistry and Physics, pp. 2000-2001. , 81 st ed. CRC Press: Boca Raton, FL 
504 |a Tarazona, P., Marini Bettolo Marconi, U., Evans, R., Phase Equilibria of Fluid Interfaces and Confined Fluids (1987) Mol. Phys., 60, pp. 573-595 
504 |a Bruno, E., Marini Bettolo Marconi, U., Evans, R., Phase Transitions in a Confined Lattice Gas: Prewetting and Capillary Condensation (1987) Physica A, 141, pp. 187-210 
504 |a Evans, R., Fluids Adsorbed in Narrow Pores: Phase Equilibria and Structure (1990) J. Phys.: Condens. Matter., 2, pp. 8989-9007 
504 |a Cole, M.W., Saam, W.F., Excitation Spectrum and Thermodynamic Properties of Liquid Films in Cylindrical Pores (1974) Phys. Rev. Lett., 32, pp. 985-988 
504 |a Evans, R., Marconi, U.M.B., Tarazona, P., Fluids in Narrow Pores: Adsorption, Capillary Condensation, and Critical Points (1986) J. Chem. Phys., 84, pp. 2376-2399 
504 |a Nicolaides, D., Evans, R., Monte Carlo Study of Phase Transitions in a Confined Lattice Gas (1989) Phys. Rev. B, 39, pp. 9336-9342 
504 |a Peterson, B.K., Gubbins, K.E., Heffelfinger, G.S., Marini Bettolo Marconi, U., Van Swol, F., Lennard-Jones Fluids in Cylindrical Pores: Nonlocal Theory and Computer Simulation (1988) J. Chem. Phys., 88, pp. 6487-6500 
504 |a Zhao, X.S., Lu, G.Q., Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study (1998) J. Phys. Chem. B, 102, pp. 1556-1561 
504 |a Kocherbitov, V., Alfredsson, V., Assessment of Porosities of SBA-15 and MCM-41 Using Water Sorption Calorimetry (2011) Langmuir, 27, pp. 3889-3897 
504 |a Ng, E.-P., Mintova, S., Nanoporous Materials with Enhanced Hydrophilicity and High Water Sorption Capacity (2008) Microporous Mesoporous Mater., 114, pp. 1-26 
504 |a Lamb, R.N., Furlong, D.N., Controlled Wettability of Quartz Surfaces (1982) J. Chem. Soc., Faraday Trans. 1, 78, pp. 61-73 
504 |a Puibasset, J., Kierlik, E., Tarjus, G., Influence of Reservoir Size on the Adsorption Path in an Ideal Pore (2009) J. Chem. Phys., 131, pp. 124123-124132 
504 |a Kierlik, E., Puibasset, J., Tarjus, G., Effect of the Reservoir Size on Gas Adsorption in Inhomogeneous Porous Media (2009) J. Phys.: Condens. Matter, 21, pp. 155102-155117 
504 |a Men, Y., Yan, Q., Jiang, G., Zhang, X., Wang, W., Nucleation and Hysteresis of Vapor-Liquid Phase Transitions in Confined Spaces: Effects of Fluid-Wall Interaction (2009) Phys. Rev. e, 79, pp. 51602-51613 
504 |a Nguyen, T.X., Bhatia, S.K., How Water Adsorbs in Hydrophobic Nanospaces (2011) J. Phys. Chem. C, 115, pp. 16606-16612 
520 3 |a The motivation of this study is to elucidate how the condensation and desorption pressures in water sorption isotherms depend on the contact angle. This question is investigated for cylindrical pores of 2.8 nm diameter by means of molecular dynamics simulations in the grand canonical ensemble, in combination with the mW coarse-grained model for water. The contact angle is characterized for different sets of water-surface interactions. First, we show that desorption in open-ended pores with moderate or low water affinity, with contact angles greater or equal than 24°, is a nonactivated process in which pressure is accurately described by the Kelvin equation. Then, we explore the influence of hydrophobicity on the capillary condensation and on the width of the hysteresis loop. We find that a small increase in the contact angle may have a significant impact on the surface density and consequently on the nucleation free energy barrier. This produces a separation of the adsorption and desorption branches, exacerbating the emerging hysteresis. These results suggest that the contact angle is not as relevant as the adsorption energy in determining condensation pressure and hysteresis. Finally, we consider nonequilibrium desorption in pores with no open ends and describe how homogeneous and heterogeneous cavitation mechanisms depend on hydrophilicity. © 2014 American Chemical Society.  |l eng 
593 |a Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina 
593 |a Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States 
690 1 0 |a ADSORPTION 
690 1 0 |a ADSORPTION ISOTHERMS 
690 1 0 |a CONDENSATION 
690 1 0 |a DESORPTION 
690 1 0 |a HYSTERESIS 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a NANOPORES 
690 1 0 |a ADSORPTION AND DESORPTIONS 
690 1 0 |a CAPILLARY CONDENSATION 
690 1 0 |a COARSE GRAINED MODELS 
690 1 0 |a CONDENSATION PRESSURE 
690 1 0 |a GRAND CANONICAL ENSEMBLE 
690 1 0 |a HETEROGENEOUS CAVITATION 
690 1 0 |a MOLECULAR DYNAMICS SIMULATIONS 
690 1 0 |a WATER SORPTION ISOTHERMS 
690 1 0 |a CONTACT ANGLE 
700 1 |a Gonzalez Solveyra, E. 
700 1 |a Molinero, V. 
700 1 |a Scherlis, D.A. 
773 0 |d American Chemical Society, 2014  |g v. 118  |h pp. 16290-16300  |k n. 29  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904962597&doi=10.1021%2fjp5000396&partnerID=40&md5=536978c544457ec0d3da4d5f49a6bb09  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp5000396  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v118_n29_p16290_Factorovich  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v118_n29_p16290_Factorovich  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v118_n29_p16290_Factorovich  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75103