E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells

E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Castillo, D.S
Otros Autores: Campalans, A., Belluscio, L.M, Carcagno, A.L, Radicell, J.P, Cánepa, E.T, Pregi, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Taylor and Francis Inc. 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 24307caa a22021977a 4500
001 PAPER-13469
003 AR-BaUEN
005 20230518204350.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84928028362 
024 7 |2 cas  |a caspase 3, 169592-56-7; cycloheximide, 642-81-9, 66-81-9; mitogen activated protein kinase kinase, 142805-58-1; zinostatin, 9014-02-2; dactinomycin, 1402-38-6, 1402-58-0, 50-76-0; histone, 9062-68-4; hydrogen peroxide, 7722-84-1; mitogen activated protein kinase kinase kinase, 146702-84-3; Cycloheximide; Dactinomycin; E2F1 Transcription Factor; E2F2 Transcription Factor; H2AFX protein, human; Histones; Hydrogen Peroxide; MAP Kinase Kinase Kinases; p300-CBP Transcription Factors; p300-CBP-associated factor; Protein Synthesis Inhibitors; Rad51 Recombinase 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Castillo, D.S. 
245 1 0 |a E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells 
260 |b Taylor and Francis Inc.  |c 2015 
270 1 0 |m Cánepa, E.T.; Laboratorio de Biología Molecular, Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Ciudad de Buenos AiresArgentina; email: ecanepa@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Leone, G., Nuckolls, F., Ishida, S., Adams, M., Sears, R., Jakoi, L., Miron, A., Nevins, J.R., Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins (2000) Mol Cell Biol, 20, pp. 3626-3632. , http://dx.doi.org/10.1128/MCB.20.10.3626-3632.2000, PMID:10779352 
504 |a He, Y., Armanious, M.K., Thomas, M.J., Cress, W.D., Identification of E2F-3B, an alternative form of E2F-3 lacking a conserved N-terminal region (2000) Oncogene, 19, pp. 3422-3433. , PMID:10918599 
504 |a Cartwright, P., Muller, H., Wagener, C., Holm, K., Helin, K., E2F-6: A novel member of the E2F family is an inhibitor of E2F-dependent transcription (1998) Oncogene, 17, pp. 611-623. , PMID:9704927 
504 |a Gaubatz, S., Wood, J.G., Livingston, D.M., Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6 (1998) Proc Natl Acad Sci U S A, 95, pp. 9190-9195. , PMID:9689056 
504 |a Di Stefano, L., Jensen, M.R., Helin, K., E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes (2003) EMBO J, 22, pp. 6289-6298. , http://dx.doi.org/10.1093/emboj/cdg613, PMID:14633988 
504 |a Christensen, J., Cloos, P., Toftegaard, U., Klinkenberg, D., Bracken, A.P., Trinh, E., HeeranM, Di Stefano L, Helin K. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription (2005) Nucleic Acids Res, 33, pp. 5458-5470. , http://dx.doi.org/10.1093/nar/gki855, PMID:16179649 
504 |a Bagchi, S., Raychaudhuri, P., Nevins, J.R., Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: A novel mechanism for E1A trans-activation (1990) Cell, 62, pp. 659-669. , http://dx.doi.org/10.1016/0092-8674(90)90112-R, PMID:2143697 
504 |a Lavia, P., Jansen-Durr, P., E2F target genes and cell-cycle checkpoint control (1999) Bioessays, 21, pp. 221-230. , http://dx.doi.org/10.1002/(SICI)1521-1878(199903)21:3%3c221::AID-BIES6%3e3.0.CO;2-J, PMID:10333731 
504 |a Huang, Y., Ishiko, T., Nakada, S., Utsugisawa, T., Kato, T., Yuan, Z.M., Role for E2F in DNA damage-induced entry of cells into S phase (1997) Cancer Res, 57, pp. 3640-3643. , PMID:9288762 
504 |a Blattner, C., Sparks, A., Lane, D., Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53 (1999) Mol Cell Biol, 19, pp. 3704-3713. , PMID:10207094 
504 |a O’Connor, D.J., Lu, X., Stress signals induce transcriptionally inactive E2F-1 independently of p53 and Rb (2000) Oncogene, 19, pp. 2369-2376. , PMID:10828878 
504 |a Lin, W.C., Lin, F.T., Nevins, J.R., Selective induction of E2F1 in response to DNA damage, mediated by ATMdependent phosphorylation (2001) Genes Dev, 15, pp. 1833-1844. , PMID:11459832 
504 |a Ma, Y., Freeman, S.N., Cress, W.D., E2F4 deficiency promotes drug-induced apoptosis (2004) Cancer Biol Ther, 3, pp. 1262-1269. , http://dx.doi.org/10.4161/cbt.3.12.1239, PMID:15611646 
504 |a Martinez, L.A., Goluszko, E., Chen, H.Z., Leone, G., Post, S., Lozano, G., Chen, Z., Chauchereau, A., E2F3 is a mediator of DNA damage-induced apoptosis (2010) Mol Cell Biol, 30, pp. 524-536. , http://dx.doi.org/10.1128/MCB.00938-09, PMID:19917728 
504 |a Zalmas, L.P., Zhao, X., Graham, A.L., Fisher, R., Reilly, C., Coutts, A.S., La Thangue, N.B., DNA-damage response control of E2F7 and E2F8 (2008) EMBO Rep, 9, pp. 252-259. , http://dx.doi.org/10.1038/sj.embor.7401158, PMID:18202719 
504 |a Biswas, A.K., Johnson, D.G., Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage (2012) Cancer Res, 72, pp. 13-17 
504 |a http://dx.doi.org/10.1158/0008-5472.CAN-11-2196, ; PMID:22180494; Stevens, C., Smith, L., La Thangue, N.B., Chk2 activates E2F-1 in response to DNA damage (2003) Nat Cell Biol, 5, pp. 401-409. , PMID:12717439 
504 |a Ianari, A., Gallo, R., Palma, M., Alesse, E., Gulino, A., Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage (2004) J Biol Chem, 279, pp. 30830-30835. , http://dx.doi.org/10.1074/jbc.M402403200, PMID:15123636 
504 |a Galbiati, L., Mendoza-Maldonado, R., Gutierrez, M.I., Giacca, M., Regulation of E2F-1 after DNA damage by p300-mediated acetylation and ubiquitination (2005) Cell Cycle, 4, pp. 930-939. , PMID:15917652 
504 |a Ferreira, R., Magnaghi-Jaulin, L., Robin, P., Harel-Bellan, A., Trouche, D., The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase (1998) Proc Natl Acad Sci U S A, 95, pp. 10493-10498. , http://dx.doi.org/10.1073/pnas.95.18.10493, ; PMID:9724731 
504 |a Vandel, L., Nicolas, E., Vaute, O., Ferreira, R., Ait-Si-Ali, S., Trouche, D., Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase (2001) Mol Cell Biol, 21, pp. 6484-6494. , http://dx.doi.org/10.1128/MCB.21.19.6484-6494.2001, PMID:11533237 
504 |a Strober, B.E., Dunaief, J.L., Guha, Goff, S.P., Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins (1996) Mol Cell Biol, 16, pp. 1576-1583. , PMID:8657132 
504 |a Martinez-Balbas, M.A., Bauer, U.M., Nielsen, S.J., Brehm, A., Kouzarides, T., Regulation of E2F1 activity by acetylation (2000) EMBO J, 19, pp. 662-671. , http://dx.doi.org/10.1093/emboj/19.4.662, PMID:10675335 
504 |a Morris, L., Allen, K.E., La Thangue, N.B., Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP co-activators (2000) Nat Cell Biol, 2, pp. 232-239. , http://dx.doi.org/10.1038/35041123, PMID:10783242 
504 |a Chen, J., Zhu, F., Weaks, R.L., Biswas, A.K., Guo, R., Li, Y., Johnson, D.G., E2F1 promotes the recruitment of DNA repair factors to sites of DNA double-strand breaks (2011) Cell Cycle, 10, pp. 1287-1294. , http://dx.doi.org/10.4161/cc.10.8.15341, PMID:21512314 
504 |a Guo, R., Chen, J., Zhu, F., Biswas, A.K., Berton, T.R., Mitchell, D.L., Johnson, D.G., E2F1 localizes to sites of UVinduced DNA damage to enhance nucleotide excision repair (2010) J Biol Chem, 285, pp. 19308-19315. , http://dx.doi.org/10.1074/jbc.M110.121939, PMID:20413589 
504 |a Guo, R., Chen, J., Mitchell, D.L., Johnson, D.G., GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage (2011) Nucleic Acids Res, 39, pp. 1390-1397. , http://dx.doi.org/10.1093/nar/gkq983, PMID:20972224 
504 |a Carcagno, A.L., Ogara, M.F., Sonzogni, S.V., Marazita, M.C., Sirkin, P.F., Ceruti, J.M., Canepa, E.T., E2F1 transcription is induced by genotoxic stress through ATM/ATR activation (2009) IUBMB Life, 61, pp. 537-543. , http://dx.doi.org/10.1002/iub.197, PMID:19391166 
504 |a Dogra, S.C., Hahn, C.N., May, B.K., Superinduction by cycloheximide of cytochrome P4502H1 and 5-aminolevulinate synthase gene transcription in chick embryo liver (1993) Arch Biochem Biophys, 300, pp. 531-534. , http://dx.doi.org/10.1006/abbi.1993.1073, PMID:7678728 
504 |a Hiebert, S.W., Chellappan, S.P., Horowitz, J.M., Nevins, J.R., The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F (1992) Genes Dev, 6, pp. 177-185. , http://dx.doi.org/10.1101/gad.6.2.177, PMID:1531329 
504 |a Park, K.K., Deok Ahn, J., Lee, I.K., Magae, J., Heintz, N.H., Kwak, J.Y., Lee, Y.C., Chae, Y.M., Inhibitory effects of novel E2F decoy oligodeoxynucleotides on mesangial cell proliferation by coexpression of E2F/DP (2003) Biochem Biophys Res Commun, 308, pp. 689-697. , http://dx.doi.org/10.1016/S0006-291X(03)01455-4, PMID:12927774 
504 |a Sharma, A., Singh, K., Almasan, A., Histone H2AX phosphorylation: A marker for DNA damage (2012) Methods Mol Biol, 920, pp. 613-626. , http://dx.doi.org/10.1007/978-1-61779-998-3_40, PMID:22941631 
504 |a Will, O., Gocke, E., Eckert, I., Schulz, I., Pflaum, M., Mahler, H.C., Epe, B., Oxidative DNA damage and mutations induced by a polar photosensitizer (1999) Ro19-8022. Mutat Res, 435, pp. 89-101. , PMID:10526220 
504 |a Campalans, A., Kortulewski, T., Amouroux, R., Menoni, H., Vermeulen, W., Radicella, J.P., Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair (2013) Nucleic Acids Res, 41, pp. 3115-3129. , http://dx.doi.org/10.1093/nar/gkt025, PMID:23355608 
504 |a Krejci, L., Altmannova, V., Spirek, M., Zhao, X., Homologous recombination and its regulation (2012) Nucleic Acids Res, 40, pp. 5795-5818. , http://dx.doi.org/10.1093/nar/gks270, PMID:22467216 
504 |a Mladenov, E., Anachkova, B., Tsaneva, I., Sub-nuclear localization of Rad51 in response to DNA damage (2006) Genes Cells, 11, pp. 513-524. , http://dx.doi.org/10.1111/j.1365-2443.2006.00958.x, PMID:16629903 
504 |a Brand, M., Moggs, J.G., Oulad-Abdelghani, M., Lejeune, F., Dilworth, F.J., Stevenin, J., Almouzni, G., Tora, L., UVdamaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation (2001) EMBO J, 20, pp. 3187-3196. , http://dx.doi.org/10.1093/emboj/20.12.3187, PMID:11406595 
504 |a Beckmann, A.M., Wilce, P.A., Egr transcription factors in the nervous system (1997) Neurochem Int, 31, pp. 477-510. , http://dx.doi.org/10.1016/S0197-0186(96)00136-2, discussion 7-6 
504 |a Quinones, A., Dobberstein, K.U., Rainov, N.G., The egr-1 gene is induced by DNA-damaging agents and nongenotoxic drugs in both normal and neoplastic human cells (2003) Life Sci, 72, pp. 2975-2992. , http://dx.doi.org/10.1016/S0024-3205(03)00230-3, PMID:12706485 
504 |a Shin, S.Y., Kim, C.G., Lee, Y.H., Egr-1 regulates the transcription of the BRCA1 gene by etoposide (2013) BMB Rep, 46, pp. 92-96. , http://dx.doi.org/10.5483/BMBRep.2013.46.2.202, PMID:23433111 
504 |a Hallahan, D.E., Dunphy, E., Virudachalam, S., Sukhatme, V.P., Kufe, D.W., Weichselbaum, R.R., C-jun and Egr-1 participate in DNA synthesis and cell survival in response to ionizing radiation exposure (1995) J Biol Chem, 270, pp. 30303-30309. , http://dx.doi.org/10.1074/jbc.270.51.30303, PMID:8530452 
504 |a Huang, R.P., Fan, Y., Debelle, I., Ni, Z., Matheny, W., Adamson, E.D., Egr-1 inhibits apoptosis during theUV response: Correlation of cell survival with Egr-1 phosphorylation (1998) Cell Death Differ, 5, pp. 96-106. , http://dx.doi.org/10.1038/sj.cdd.4400322, PMID:10200450 
504 |a Pediconi, N., Ianari, A., Costanzo, A., Belloni, L., Gallo, R., Cimino, L., Porcellini, A., Alesse, E., Differential regulation of E2F1 apoptotic target genes in response to DNA damage (2003) Nat Cell Biol, 5, pp. 552-558. , http://dx.doi.org/10.1038/ncb998, PMID:12766778 
504 |a Yoshida, K., Inoue, I., Expression of MCM10 and TopBP1 is regulated by cell proliferation and UV irradiation via the E2F transcription factor (2004) Oncogene, 23, pp. 6250-6260. , http://dx.doi.org/10.1038/sj.onc.1207829, PMID:15195143 
504 |a Kowalik, T.F., Degregori, J., Leone, G., Jakoi, L., Nevins, J.R., E2F1-specific induction of apoptosis and p53 accumulation, which is blocked by Mdm2 (1998) Cell Growth Differ, 9, pp. 113-118. , PMID:9486847 
504 |a Vigo, E., Muller, H., Prosperini, E., Hateboer, G., Cartwright, P., Moroni, M.C., Helin, K., CDC25A phosphatase is a target of E2F and is required for efficient E2Finduced S phase (1999) Mol Cell Biol, 19, pp. 6379-6395. , ; PMID:10454584 
504 |a Ziebold, U., Reza, T., Caron, A., Lees, J.A., E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos (2001) Genes Dev, 15, pp. 386-391. , http://dx.doi.org/10.1101/gad.858801, PMID:11230146 
504 |a Degregori, J., E2F and cell survival: Context really is key (2005) Dev Cell, 9, pp. 442-444. , http://dx.doi.org/10.1016/j.devcel.2005.09.006, PMID:16198285 
504 |a Wikonkal, N.M., Remenyik, E., Knezevic, D., Zhang, W., Liu, M., Zhao, H., Berton, T.R., Brash, D.E., Inactivating E2f1 reverts apoptosis resistance and cancer sensitivity in Trp53-deficient mice (2003) Nat Cell Biol, 5, pp. 655-660. , http://dx.doi.org/10.1038/ncb1001, PMID:12833065 
504 |a Berton, T.R., Mitchell, D.L., Guo, R., Johnson, D.G., Regulation of epidermal apoptosis and DNA repair by E2F1 in response to UV B radiation (2005) Oncogene, 24, pp. 2449-2460. , http://dx.doi.org/10.1038/sj.onc.1208462, PMID:15735727 
504 |a Liu, K., Lin, F.T., Ruppert, J.M., Lin, W.C., Regulation of E2F1 by BRCT domain-containing protein TopBP1 (2003) Mol Cell Biol, 23, pp. 3287-3304. , http://dx.doi.org/10.1128/MCB.23.9.3287-3304.2003, PMID:12697828 
504 |a Maser, R.S., Mirzoeva, O.K., Wells, J., Olivares, H., Williams, B.R., Zinkel, R.A., Farnham, P.J., Petrini, J.H., Mre11 complex and DNA replication: Linkage to E2F and sites of DNA synthesis (2001) Mol Cell Biol, 21, pp. 6006-6016. , http://dx.doi.org/10.1128/MCB.21.17.6006-6016.2001, PMID:11486038 
504 |a Chen, D., Yu, Z., Zhu, Z., Lopez, C.D., E2F1 regulates the base excision repair gene XRCC1 and promotes DNA repair (2008) J Biol Chem, 283, pp. 15381-15389. , http://dx.doi.org/10.1074/jbc.M710296200, PMID:18348985 
504 |a Field, S.J., Tsai, F.Y., Kuo, F., Zubiaga, A.M., Kaelin, W.G., Jr., Livingston, D.M., Orkin, S.H., Greenberg, M.E., E2F-1 functions in mice to promote apoptosis and suppress proliferation (1996) Cell, 85, pp. 549-561. , PMID:8653790 
504 |a Yamasaki, L., Jacks, T., Bronson, R., Goillot, E., Harlow, E., Dyson, N.J., Tumor induction and tissue atrophy in mice lacking E2F-1 (1996) Cell, 85, pp. 537-548. , PMID:8653789 
504 |a Zhu, J.W., Field, S.J., Gore, L., Thompson, M., Yang, H., Fujiwara, Y., Cardiff, R.D., Degregori, J., E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis (2001) Mol Cell Biol, 21, pp. 8547-8564. , http://dx.doi.org/10.1128/MCB.21.24.8547-8564.2001, PMID:11713289 
504 |a McKinnon, P.J., DNA repair deficiency and neurological disease (2009) Nat Rev Neurosci, 10, pp. 100-112. , http://dx.doi.org/10.1038/nrn2559, PMID:19145234 
504 |a Caceres, A., Banker, G.A., Binder, L., Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture (1986) J Neurosci, 6, pp. 714-722. , PMID:3514816 
504 |a Harris, K.F., Christensen, J.B., Radany, E.H., Imperiale, M.J., Novel mechanisms of E2F induction by BK virus large-T antigen: Requirement of both the pRb-binding and the (1998) J Domains. Mol Cell Biol, 18, pp. 1746-1756. , PMID:9488491 
504 |a Campanero, M.R., Flemington, E.K., Regulation of E2F through ubiquitin-proteasome-dependent degradation: Stabilization by the pRB tumor suppressor protein (1997) Proc Natl Acad Sci U S A, 94, pp. 2221-2226. , http://dx.doi.org/10.1073/pnas.94.6.2221, PMID:9122175 
504 |a Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Anal Biochem, 162, pp. 156-159. , http://dx.doi.org/10.1016/0003-2697(87)90021-2, PMID:2440339 
504 |a Varone, C.L., Giono, L.E., Ochoa, A., Zakin, M.M., Canepa, E.T., Transcriptional regulation of 5-aminolevulinate synthase by phenobarbital and cAMP-dependent protein kinase (1999) Arch Biochem Biophys, 372, pp. 261-270. , http://dx.doi.org/10.1006/abbi.1999.1470, PMID:10600163 
504 |a Ceruti, J.M., Scassa, M.E., Flo, J.M., Varone, C.L., Canepa, E.T., Induction of p19INK4d in response to ultraviolet light improves DNA repair and confers resistance to apoptosis in neuroblastoma cells (2005) Oncogene, 24, pp. 4065-4080. , http://dx.doi.org/10.1038/sj.onc.1208570, PMID:15750620 
504 |a Ceruti, J.M., Scassa, M.E., Marazita, M.C., Carcagno, A.C., Sirkin, P.F., Canepa, E.T., Transcriptional upregulation of p19INK4d upon diverse genotoxic stress is critical for optimal DNA damage response (2009) Int J Biochem Cell Biol, 41, pp. 1344-1353. , http://dx.doi.org/10.1016/j.biocel.2008.12.005, PMID:19130897 
504 |a Mendez, J., Stillman, B., Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: Assembly of prereplication complexes in late mitosis (2000) Mol Cell Biol, 20, pp. 8602-8612. , http://dx.doi.org/10.1128/MCB.20.22.8602-8612.2000, PMID:11046155 
504 |a Fousteri, M., Vermeulen, W., Van Zeeland, A.A., Mullenders, L.H., Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo (2006) Mol Cell, 23, pp. 471-482. , http://dx.doi.org/10.1016/j.molcel.2006.06.029, PMID:16916636 
504 |a Gospodinov, A., Tsaneva, I., Anachkova, B., RAD51 foci formation in response to DNA damage is modulated by TIP49 (2009) Int J Biochem Cell Biol, 41, pp. 925-933. , http://dx.doi.org/10.1016/j.biocel.2008, PMID:18834951 
520 3 |a E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with gH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells. © 2015 Taylor & Francis Group, LLC  |l eng 
593 |a Laboratorio de Biología Molecular, Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Ciudad de Buenos Aires, Argentina 
593 |a CEA; Institute of Cellular and Molecular Radiobiology, Fontenay aux Roses, France 
593 |a UMR967 INSERM/Universités Paris Diderot et Paris Sud, Fontenay aux Roses, France 
593 |a Laboratorio de Genética del Desarrollo Neural, Fundación Instituto Leloir, Ciudad de Buenos Aires, Argentina 
690 1 0 |a DNA DAMAGE RESPONSE 
690 1 0 |a DNA REPAIR 
690 1 0 |a E2F TRANSCRIPTION FACTOR 
690 1 0 |a GENOMIC STABILITY 
690 1 0 |a NEURONAL CELLS 
690 1 0 |a ATM PROTEIN 
690 1 0 |a ATR PROTEIN 
690 1 0 |a CASPASE 3 
690 1 0 |a CYCLOHEXIMIDE 
690 1 0 |a HISTONE ACETYLTRANSFERASE GCN5 
690 1 0 |a HISTONE H2AX 
690 1 0 |a MESSENGER RNA 
690 1 0 |a MITOGEN ACTIVATED PROTEIN KINASE KINASE 
690 1 0 |a RAD51 PROTEIN 
690 1 0 |a TRANSCRIPTION FACTOR E2F1 
690 1 0 |a TRANSCRIPTION FACTOR E2F2 
690 1 0 |a ZINOSTATIN 
690 1 0 |a CYCLOHEXIMIDE 
690 1 0 |a DACTINOMYCIN 
690 1 0 |a H2AFX PROTEIN, HUMAN 
690 1 0 |a HISTONE 
690 1 0 |a HISTONE ACETYLTRANSFERASE PCAF 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a MITOGEN ACTIVATED PROTEIN KINASE KINASE KINASE 
690 1 0 |a P300-CBP-ASSOCIATED FACTOR 
690 1 0 |a PROTEIN SYNTHESIS INHIBITOR 
690 1 0 |a RAD51 PROTEIN 
690 1 0 |a TRANSCRIPTION FACTOR E2F1 
690 1 0 |a TRANSCRIPTION FACTOR E2F2 
690 1 0 |a ANIMAL CELL 
690 1 0 |a APOPTOSIS 
690 1 0 |a ARTICLE 
690 1 0 |a CELL VIABILITY 
690 1 0 |a CELLULAR STRESS RESPONSE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DNA DAMAGE 
690 1 0 |a DNA REPAIR 
690 1 0 |a GENE INDUCTION 
690 1 0 |a GENETIC TRANSCRIPTION 
690 1 0 |a GENOMIC INSTABILITY 
690 1 0 |a GENOTOXICITY 
690 1 0 |a HISTONE ACETYLATION 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a MOUSE 
690 1 0 |a NERVE CELL 
690 1 0 |a NONHUMAN 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN PROTEIN INTERACTION 
690 1 0 |a PROTEIN SYNTHESIS 
690 1 0 |a RADIATION INJURY 
690 1 0 |a ULTRAVIOLET RADIATION 
690 1 0 |a UPREGULATION 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a CYTOLOGY 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a GENETICS 
690 1 0 |a HEK293 CELL LINE 
690 1 0 |a METABOLISM 
690 1 0 |a NERVE CELL 
690 1 0 |a RADIATION RESPONSE 
690 1 0 |a TUMOR CELL LINE 
690 1 0 |a CELL LINE, TUMOR 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a CYCLOHEXIMIDE 
690 1 0 |a DACTINOMYCIN 
690 1 0 |a DNA DAMAGE 
690 1 0 |a DNA REPAIR 
690 1 0 |a E2F1 TRANSCRIPTION FACTOR 
690 1 0 |a E2F2 TRANSCRIPTION FACTOR 
690 1 0 |a GENOMIC INSTABILITY 
690 1 0 |a HEK293 CELLS 
690 1 0 |a HISTONES 
690 1 0 |a HUMANS 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a MAP KINASE KINASE KINASES 
690 1 0 |a NEURONS 
690 1 0 |a P300-CBP TRANSCRIPTION FACTORS 
690 1 0 |a PROTEIN SYNTHESIS INHIBITORS 
690 1 0 |a RAD51 RECOMBINASE 
690 1 0 |a ULTRAVIOLET RAYS 
690 1 0 |a UP-REGULATION 
700 1 |a Campalans, A. 
700 1 |a Belluscio, L.M. 
700 1 |a Carcagno, A.L. 
700 1 |a Radicell, J.P. 
700 1 |a Cánepa, E.T. 
700 1 |a Pregi, N. 
773 0 |d Taylor and Francis Inc., 2015  |g v. 14  |h pp. 1300-1314  |k n. 8  |p Cell Cycle  |x 15384101  |t Cell Cycle 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928028362&doi=10.4161%2f15384101.2014.985031&partnerID=40&md5=f5c9ff8ca7d0c3247a26c2606040cbec  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.4161/15384101.2014.985031  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15384101_v14_n8_p1300_Castillo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15384101_v14_n8_p1300_Castillo  |y Registro en la Biblioteca Digital 
961 |a paper_15384101_v14_n8_p1300_Castillo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74422