Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions

Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Chemes, L.B
Otros Autores: de Prat-Gay, G., Sánchez, I.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 22626caa a22021137a 4500
001 PAPER-13411
003 AR-BaUEN
005 20230607131859.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84926050157 
024 7 |2 cas  |a protein, 67254-75-5; Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a COSBE 
100 1 |a Chemes, L.B. 
245 1 0 |a Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions 
260 |b Elsevier Ltd  |c 2015 
270 1 0 |m Chemes, L.B.; Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Dinkel, H., Van Roey, K., Michael, S., Davey, N.E., Weatheritt, R.J., Born, D., Speck, T., Kuban, M., The eukaryotic linear motif resource ELM: 10 years and counting (2014) Nucleic Acids Res, 42, pp. D259-D266 
504 |a Van Roey, K., Uyar, B., Weatheritt, R.J., Dinkel, H., Seiler, M., Budd, A., Gibson, T.J., Davey, N.E., Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation (2014) Chem Rev, 114, pp. 6733-6778 
504 |a Van Roey, K., Gibson, T.J., Davey, N.E., Motif switches: decision-making in cell regulation (2012) Curr Opin Struct Biol, 22, pp. 378-385 
504 |a Davey, N.E., Trave, G., Gibson, T.J., How viruses hijack cell regulation (2011) Trends Biochem Sci, 36, pp. 159-169 
504 |a Kadaveru, K., Vyas, J., Schiller, M.R., Viral infection and human disease - insights from minimotifs (2008) Front Biosci, 13, pp. 6455-6471 
504 |a Dyer, M.D., Murali, T.M., Sobral, B.W., The landscape of human proteins interacting with viruses and other pathogens (2008) PLoS Pathog, 4, p. e32 
504 |a Elde, N.C., Malik, H.S., The evolutionary conundrum of pathogen mimicry (2009) Nat Rev Microbiol, 7, pp. 787-797 
504 |a Ruhanen, H., Hurley, D., Ghosh, A., O'Brien, K.T., Johnston, C.R., Shields, D.C., Potential of known and short prokaryotic protein motifs as a basis for novel peptide-based antibacterial therapeutics: a computational survey (2014) Front Microbiol, 5, p. 4 
504 |a Via, A., Uyar, B., Brun, C., Zanzoni, A., How pathogens use linear motifs to perturb host cell networks (2015) Trends Biochem Sci, 40, pp. 36-48 
504 |a Zhang, L., Zhang, C., Ojcius, D.M., Sun, D., Zhao, J., Lin, X., Li, L., Yan, J., The mammalian cell entry (Mce) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals (2012) Mol Microbiol, 83, pp. 1006-1023 
504 |a Tonelli, R.R., Giordano, R.J., Barbu, E.M., Torrecilhas, A.C., Kobayashi, G.S., Langley, R.R., Arap, W., Alves, M.J., Role of the gp85/trans-sialidases in Trypanosoma cruzi tissue tropism: preferential binding of a conserved peptide motif to the vasculature in vivo (2010) PLoS Negl Trop Dis, 4, p. e864 
504 |a Safari, F., Murata-Kamiya, N., Saito, Y., Hatakeyama, M., Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors (2011) Proc Natl Acad Sci U S A, 108, pp. 14938-14943 
504 |a Evans, P., Sacan, A., Ungar, L., Tozeren, A., Sequence alignment reveals possible MAPK docking motifs on HIV proteins (2010) PLoS ONE, 5, p. e8942 
504 |a Lee, C.W., Ferreon, J.C., Ferreon, A.C., Arai, M., Wright, P.E., Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation (2010) Proc Natl Acad Sci U S A, 107, pp. 19290-19295 
504 |a Aitio, O., Hellman, M., Kazlauskas, A., Vingadassalom, D.F., Leong, J.M., Saksela, K., Permi, P., Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly (2010) Proc Natl Acad Sci U S A, 107, pp. 21743-21748 
504 |a Garamszegi, S., Franzosa, E.A., Xia, Y., Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks (2013) PLoS Pathog, 9, p. e1003778 
504 |a Chemes, L.B., Sanchez, I.E., Smal, C., de Prat-Gay, G., Targeting mechanism of the retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural modularity, intrinsic disorder and phosphorylation of human papillomavirus E7 (2010) FEBS J, 277, pp. 973-988 
504 |a de Souza, R.F., Iyer, L.M., Aravind, L., Diversity and evolution of chromatin proteins encoded by DNA viruses (2010) Biochim Biophys Acta, 1799, pp. 302-318 
504 |a Zanier, K., Charbonnier, S., Sidi, A.O., McEwen, A.G., Ferrario, M.G., Poussin-Courmontagne, P., Cura, V., Ansari, T., Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins (2013) Science, 339, pp. 694-698 
504 |a Liu, X., Marmorstein, R., Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor (2007) Genes Dev, 21, pp. 2711-2716 
504 |a Noval, M.G., Gallo, M., Perrone, S., Salvay, A.G., Chemes, L.B., de Prat-Gay, G., Conformational dissection of a viral intrinsically disordered domain involved in cellular transformation (2013) PLOS ONE, 8, p. e72760 
504 |a Borcherds, W., Theillet, F.X., Katzer, A., Finzel, A., Mishall, K.M., Powell, A.T., Wu, H., Selenko, P., Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells (2014) Nat Chem Biol, 10, pp. 1000-1002 
504 |a Uversky, V.N., Intrinsically disordered proteins may escape unwanted interactions via functional misfolding (2011) Biochim Biophys Acta, 1814, pp. 693-712 
504 |a Singh, M., Krajewski, M., Mikolajka, A., Holak, T.A., Molecular determinants for the complex formation between the retinoblastoma protein and LXCXE sequences (2005) J Biol Chem, 280, pp. 37868-37876 
504 |a Stein, A., Aloy, P., Contextual specificity in peptide-mediated protein interactions (2008) PLoS ONE, 3, p. e2524 
504 |a Chemes, L.B., Sanchez, I.E., de Prat-Gay, G., Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target (2011) J Mol Biol, 412, pp. 267-284 
504 |a Aitio, O., Hellman, M., Skehan, B., Kesti, T., Leong, J.M., Saksela, K., Permi, P., Enterohaemorrhagic Escherichia coli exploits a tryptophan switch to hijack host f-actin assembly (2012) Structure, 20, pp. 1692-1703 
504 |a Kaneko, T., Huang, H., Cao, X., Li, X., Li, C., Voss, C., Sidhu, S.S., Li, S.S., Superbinder SH2 domains act as antagonists of cell signaling (2012) Sci Signal, 5, p. ra68 
504 |a Gibson, T.J., Seiler, M., Veitia, R.A., The transience of transient overexpression (2013) Nat Methods, 10, pp. 715-721 
504 |a Ferreon, J.C., Martinez-Yamout, M.A., Dyson, H.J., Wright, P.E., Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein (2009) Proc Natl Acad Sci U S A, 106, pp. 13260-13265 
504 |a Burke, J.R., Hura, G.L., Rubin, S.M., Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control (2012) Genes Dev, 26, pp. 1156-1166 
504 |a Fuxreiter, M., Tompa, P., Fuzzy complexes: a more stochastic view of protein function (2012) Adv Exp Med Biol, 725, pp. 1-14 
504 |a Jansma, A.L., Martinez-Yamout, M.A., Liao, R., Sun, P., Dyson, H.J., Wright, P.E., The high-risk HPV16 E7 oncoprotein mediates interaction between the transcriptional coactivator CBP and the retinoblastoma protein pRb (2014) J Mol Biol, 426, pp. 4030-4048 
504 |a Boutros, R., Lobjois, V., Ducommun, B., CDC25 phosphatases in cancer cells: key players? Good targets? (2007) Nat Rev Cancer, 7, pp. 495-507 
504 |a Besson, A., Dowdy, S.F., Roberts, J.M., CDK inhibitors: cell cycle regulators and beyond (2008) Dev Cell, 14, pp. 159-169 
504 |a Primorac, I., Musacchio, A., Panta rhei: the APC/C at steady state (2013) J Cell Biol, 201, pp. 177-189 
504 |a Ferreon, A.C., Ferreon, J.C., Wright, P.E., Deniz, A.A., Modulation of allostery by protein intrinsic disorder (2013) Nature, 498, pp. 390-394 
504 |a Felsani, A., Mileo, A.M., Paggi, M.G., Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins (2006) Oncogene, 25, pp. 5277-5285 
504 |a Breuer, S., Schievink, S.I., Schulte, A., Blankenfeldt, W., Fackler, O.T., Geyer, M., Molecular design, functional characterization and structural basis of a protein inhibitor against the HIV-1 pathogenicity factor Nef (2011) PLoS ONE, 6, p. e20033 
504 |a Wagner, A., (2011) The Origin of Evolutionary Innovations: A Theory of Transformative Change in Living Systems, , Oxford Press, Oxford 
504 |a Moses, A.M., Liku, M.E., Li, J.J., Durbin, R., Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites (2007) Proc Natl Acad Sci U S A, 104, pp. 17713-17718 
504 |a Beltrao, P., Serrano, L., Specificity and evolvability in eukaryotic protein interaction networks (2007) PLoS Comput Biol, 3, p. e25 
504 |a Neduva, V., Russell, R.B., Linear motifs: evolutionary interaction switches (2005) FEBS Lett, 579, pp. 3342-3345 
504 |a Chemes, L.B., Glavina, J., Alonso, L.G., Marino-Buslje, C., de Prat-Gay, G., Sanchez, I.E., Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein (2012) PLoS ONE, 7, p. e47661 
504 |a Brown, C.J., Johnson, A.K., Dunker, A.K., Daughdrill, G.W., Evolution and disorder (2011) Curr Opin Struct Biol, 21, pp. 441-446 
504 |a Patel, M.R., Loo, Y.M., Horner, S.M., Gale, M., Malik, H.S., Convergent evolution of escape from hepaciviral antagonism in primates (2012) PLoS Biol, 10, p. e1001282 
504 |a Rosso, L., Marques, A.C., Weier, M., Lambert, N., Lambot, M.A., Vanderhaeghen, P., Kaessmann, H., Birth and rapid subcellular adaptation of a hominoid-specific CDC14 protein (2008) PLoS Biol, 6, p. e140 
504 |a Tan, C.S., Pasculescu, A., Lim, W.A., Pawson, T., Bader, G.D., Linding, R., Positive selection of tyrosine loss in metazoan evolution (2009) Science, 325, pp. 1686-1688 
504 |a Via, A., Gherardini, P.F., Ferraro, E., Ausiello, G., Scalia Tomba, G., Helmer-Citterich, M., False occurrences of functional motifs in protein sequences highlight evolutionary constraints (2007) BMC Bioinform, 8, p. 68 
504 |a Davey, N.E., Van Roey, K., Weatheritt, R.J., Toedt, G., Uyar, B., Altenberg, B., Budd, A., Gibson, T.J., Attributes of short linear motifs (2012) Mol Biosyst, 8, pp. 268-281 
504 |a Zielinska, D.F., Gnad, F., Schropp, K., Wisniewski, J.R., Mann, M., Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery (2012) Mol Cell, 46, pp. 542-548 
504 |a Nguyen Ba, A.N., Strome, B., Hua, J.J., Desmond, J., Gagnon-Arsenault, I., Weiss, E.L., Landry, C.R., Moses, A.M., Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences (2014) PLoS Comput Biol, 10, p. e1003977 
504 |a Hittinger, C.T., Carroll, S.B., Evolution of an insect-specific GROUCHO-interaction motif in the ENGRAILED selector protein (2008) Evol Dev, 10, pp. 537-545 
504 |a Bruning, J.B., Shamoo, Y., Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1 (2004) Structure, 12, pp. 2209-2219 
504 |a Holt, L.J., Tuch, B.B., Villen, J., Johnson, A.D., Gygi, S.P., Morgan, D.O., Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution (2009) Science, 325, pp. 1682-1686 
504 |a Goldman, A., Roy, J., Bodenmiller, B., Wanka, S., Landry, C.R., Aebersold, R., Cyert, M.S., The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity (2014) Mol Cell, 55, pp. 422-435 
504 |a Hagai, T., Azia, A., Babu, M.M., Andino, R., Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions (2014) Cell Rep, 7, pp. 1729-1739 
504 |a Pushker, R., Mooney, C., Davey, N.E., Jacque, J.M., Shields, D.C., Marked variability in the extent of protein disorder within and between viral families (2013) PLOS ONE, 8, p. e60724 
504 |a Duffy, S., Shackelton, L.A., Holmes, E.C., Rates of evolutionary change in viruses: patterns and determinants (2008) Nat Rev Genet, 9, pp. 267-276 
504 |a Daugherty, M.D., Malik, H.S., Rules of engagement: molecular insights from host-virus arms races (2012) Annu Rev Genet, 46, pp. 677-700 
504 |a Wei, P., Wong, W.W., Park, J.S., Corcoran, E.E., Peisajovich, S.G., Onuffer, J.J., Weiss, A., Lim, W.A., Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells (2012) Nature, 488, pp. 384-388 
504 |a Chemes, L.B., Glavina, J., Faivovich, J., de Prat-Gay, G., Sanchez, I.E., Evolution of linear motifs within the papillomavirus E7 oncoprotein (2012) J Mol Biol, 422, pp. 336-346 
504 |a Lo, M.K., Sogaard, T.M., Karlin, D.G., Evolution and structural organization of the C proteins of paramyxovirinae (2014) PLOS ONE, 9, p. e90003 
504 |a Karlin, D., Belshaw, R., Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins (2012) PLoS ONE, 7, p. e31719 
504 |a Jackson, D., Hossain, M.J., Hickman, D., Perez, D.R., Lamb, R.A., A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity (2008) Proc Natl Acad Sci U S A, 105, pp. 4381-4386 
504 |a Prehaud, C., Wolff, N., Terrien, E., Lafage, M., Megret, F., Babault, N., Cordier, F., Menager, P., Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein (2010) Sci Signal, 3, p. ra5 
504 |a Yang, C.W., A comparative study of short linear motif compositions of the influenza A virus ribonucleoproteins (2012) PLoS ONE, 7, p. e38637 
504 |a Igarashi, M., Ito, K., Kida, H., Takada, A., Genetically destined potentials for N-linked glycosylation of influenza virus hemagglutinin (2008) Virology, 376, pp. 323-329 
504 |a Abe, Y., Takashita, E., Sugawara, K., Matsuzaki, Y., Muraki, Y., Hongo, S., Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin (2004) J Virol, 78, pp. 9605-9611 
504 |a Lawrence, P., LaRocco, M., Baxt, B., Rieder, E., Examination of soluble integrin resistant mutants of foot-and-mouth disease virus (2013) Virol J, 10, p. 2 
504 |a Pim, D., Bergant, M., Boon, S.S., Ganti, K., Kranjec, C., Massimi, P., Subbaiah, V.K., Banks, L., Human papillomaviruses and the specificity of PDZ domain targeting (2012) FEBS J, 279, pp. 3530-3537 
504 |a Neveu, G., Cassonnet, P., Vidalain, P.O., Rolloy, C., Mendoza, J., Jones, L., Tangy, F., Tafforeau, L., Comparative analysis of virus-host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase (2012) Methods, 58, pp. 349-359 
504 |a Dampier, W., Evans, P., Ungar, L., Tozeren, A., Host sequence motifs shared by HIV predict response to antiretroviral therapy (2009) BMC Med Genomics, 2, p. 47 
504 |a Purdy, M.A., Lara, J., Khudyakov, Y.E., The hepatitis E virus polyproline region is involved in viral adaptation (2012) PLOS ONE, 7, p. e35974 
504 |a Dolan, P.T., Roth, A.P., Xue, B., Sun, R., Dunker, A.K., Uversky, V.N., LaCount, D.J., Intrinsic disorder mediates hepatitis C virus core - host cell protein interactions (2015) Protein Sci, 24, pp. 221-235 
504 |a Fares, M.A., Moya, A., Escarmis, C., Baranowski, E., Domingo, E., Barrio, E., Evidence for positive selection in the capsid protein-coding region of the foot-and-mouth disease virus (FMDV) subjected to experimental passage regimens (2001) Mol Biol Evol, 18, pp. 10-21 
504 |a McGivern, D.R., Villanueva, R.A., Chinnaswamy, S., Kao, C.C., Lemon, S.M., Impaired replication of hepatitis C virus containing mutations in a conserved NS5B retinoblastoma protein-binding motif (2009) J Virol, 83, pp. 7422-7433 
504 |a Hertz, T., Nolan, D., James, I., John, M., Gaudieri, S., Phillips, E., Huang, J.C., Jojic, N., Mapping the landscape of host-pathogen coevolution: HLA class I binding and its relationship with evolutionary conservation in human and viral proteins (2011) J Virol, 85, pp. 1310-1321 
504 |a Sarmady, M., Dampier, W., Tozeren, A., Sequence- and interactome-based prediction of viral protein hotspots targeting host proteins: a case study for HIV Nef (2011) PLoS ONE, 6, p. e20735 
504 |a He, L., De Groot, A.S., Gutierrez, A.H., Martin, W.D., Moise, L., Bailey-Kellogg, C., Integrated assessment of predicted MHC binding and cross-conservation with self reveals patterns of viral camouflage (2014) BMC Bioinform, 15 (SUPPL), p. S1 
504 |a Davey, N.E., Haslam, N.J., Shields, D.C., Edwards, R.J., SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs (2010) Nucleic Acids Res, 38, pp. W534-W539 
520 3 |a Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. © 2015 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: PICT 2012-2550 
536 |a Detalles de la financiación: PICT 2013-1985 
536 |a Detalles de la financiación: The authors thank L.G. Alonso, P. Beltrao, N.E. Davey, D.U. Ferreiro, A.M. Moses, M.G. Noval, N. Palopoli and R. Sieira for critical reading of the manuscript. This work was supported by ANPCyT PICT 2012-2550 grant (to I.E.S.) and by ANPCyT PICT 2013-1985 grant (to L.B.C). All authors are CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) researchers. 
593 |a Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, 1405, Argentina 
593 |a Protein Physiology Laboratory, Universidad de Buenos Aires, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales and IQUIBICEN-CONICET, Buenos Aires, Argentina 
690 1 0 |a RETINOBLASTOMA BINDING PROTEIN 
690 1 0 |a RETINOBLASTOMA PROTEIN 
690 1 0 |a PROTEIN 
690 1 0 |a ADAPTIVE EVOLUTION 
690 1 0 |a BINDING AFFINITY 
690 1 0 |a COEVOLUTION 
690 1 0 |a CONVERGENT EVOLUTION 
690 1 0 |a EVOLUTIONARY RATE 
690 1 0 |a GENETIC CONSERVATION 
690 1 0 |a HABITAT SELECTION 
690 1 0 |a HELICOBACTER 
690 1 0 |a HOST PATHOGEN INTERACTION 
690 1 0 |a HOST RESISTANCE 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN ADENOVIRUS 5 
690 1 0 |a HUMAN PAPILLOMAVIRUS TYPE 16 
690 1 0 |a LEPTOSPIRA 
690 1 0 |a LINEAR MOTIF MIMICRY 
690 1 0 |a METAPNEUMOVIRUS 
690 1 0 |a MOLECULAR EVOLUTION 
690 1 0 |a MOLECULAR MIMICRY 
690 1 0 |a MOTIF SWITCH 
690 1 0 |a NEGATIVE PURIFYING SELECTION 
690 1 0 |a NONHUMAN 
690 1 0 |a PHYLOGENY 
690 1 0 |a PHYSICAL CHEMISTRY 
690 1 0 |a POSITIVE SELECTION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN ASSEMBLY 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a PROTEIN LINEAR MOTIF 
690 1 0 |a PROTEIN MOTIF 
690 1 0 |a PROTEIN PROTEIN INTERACTION 
690 1 0 |a PROTEIN SECONDARY STRUCTURE 
690 1 0 |a PROTEIN STRUCTURE, FUNCTION AND VARIABILITY 
690 1 0 |a PURIFYING SELECTION 
690 1 0 |a PYRENOPHORA 
690 1 0 |a REGULAR EXPRESSION 
690 1 0 |a REGULATORY EVOLUTION 
690 1 0 |a REVIEW 
690 1 0 |a SEQUENCE ALIGNMENT 
690 1 0 |a SEQUENCE ANALYSIS 
690 1 0 |a SIMIAN VIRUS 40 
690 1 0 |a ANIMAL 
690 1 0 |a CHEMICAL STRUCTURE 
690 1 0 |a CHEMISTRY 
690 1 0 |a GENETICS 
690 1 0 |a METABOLISM 
690 1 0 |a PROTEIN MOTIF 
690 1 0 |a PROTEIN PROTEIN INTERACTION 
690 1 0 |a EUKARYOTA 
690 1 0 |a PROKARYOTA 
690 1 0 |a AMINO ACID MOTIFS 
690 1 0 |a ANIMALS 
690 1 0 |a EVOLUTION, MOLECULAR 
690 1 0 |a HOST-PATHOGEN INTERACTIONS 
690 1 0 |a HUMANS 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a MOLECULAR MIMICRY 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a PROTEIN INTERACTION MAPS 
690 1 0 |a PROTEINS 
700 1 |a de Prat-Gay, G. 
700 1 |a Sánchez, I.E. 
773 0 |d Elsevier Ltd, 2015  |g v. 32  |h pp. 91-101  |p Curr. Opin. Struct. Biol.  |x 0959440X  |w (AR-BaUEN)CENRE-4377  |t Current Opinion in Structural Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926050157&doi=10.1016%2fj.sbi.2015.03.004&partnerID=40&md5=60471ca84b252e0446f3509f52b49984  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.sbi.2015.03.004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0959440X_v32_n_p91_Chemes  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0959440X_v32_n_p91_Chemes  |y Registro en la Biblioteca Digital 
961 |a paper_0959440X_v32_n_p91_Chemes  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74364