Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces

Experimental and theoretical studies suggest that the hydrophobicity of chemically heterogeneous surfaces may present important nonlinearities as a function of composition. In this article, this issue is systematically explored using molecular simulations. The hydrophobicity is characterized by comp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Factorovich, M.H
Otros Autores: Molinero, V., Scherlis, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Experimental and theoretical studies suggest that the hydrophobicity of chemically heterogeneous surfaces may present important nonlinearities as a function of composition. In this article, this issue is systematically explored using molecular simulations. The hydrophobicity is characterized by computing the contact angle of water on flat interfaces and the desorption pressure of water from cylindrical nanopores. The studied interfaces are binary mixtures of hydrophilic and hydrophobic sites, with and without the ability to form hydrogen bonds with water, intercalated at different scales. Water is described with the mW coarse-grained potential, where hydrogen-bonds are modeled in the absence of explicit hydrogen atoms, via a three-body term that favors tetrahedral coordination. We found that the combination of particles exhibiting the same kind of coordination with water gives rise to a linear dependence of contact angle with respect to composition, in agreement with the Cassie model. However, when only the hydrophilic component can form hydrogen bonds, unprecedented deviations from linearity are observed, increasing the contact angle and the vapor pressure above their values in the purely hydrophobic interface. In particular, the maximum enhancement is seen when a 35% of hydrogen bonding molecules is randomly scattered on a hydrophobic background. This effect is very sensitive to the heterogeneity length-scale, being significantly attenuated when the hydrophilic domains reach a size of 2 nm. The observed behavior may be qualitatively rationalized via a simple modification of the Cassie model, by assuming a different microrugosity for hydrogen bonding and non-hydrogen bonding interfaces. © 2015 American Chemical Society.
Bibliografía:Young, T., An essay on the cohesion of fluids (1805) Philos. Trans. R. Soc. London, 95, p. 65
Gibbs, J.W., (1961) The Scientific Papers of J. W. Gibbs, 1, p. 288. , Dover: New York, Vol
Wenzel, R.N., Resistance of solid surfaces to wetting by water (1936) Ind. Eng. Chem., 28, p. 988
Cassie, A.B.D., Contact angles (1948) Discuss. Faraday Soc., 3, pp. 11-16
Marmur, A., Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not to Be? (2003) Langmuir, 19, pp. 8343-8348
Marmur, A., Bittoun, E., When Wenzel and Cassie Are Right: Reconciling Local and Global Considerations (2009) Langmuir, 25, pp. 1277-1281
Johnson, R.E., Dettre, R.H., (1993) Wettability, pp. 1-74. , In; Berg, J. C. Marcel Dekker: New York
Johnson, R.E., Dettre, R.H., Brandeth, D., Dynamic Contact Angle and Contact-Angle Hysteresis (1977) J. Colloid Interface Sci., 62, pp. 205-212
Huh, C., Mason, S.G., Effects of surface roughness on wetting (theoretical) (1977) J. Colloid Interface Sci., 60, p. 11
Joanny, J.F., De Gennes, P.G., A model for contact angle hysteresis (1984) J. Chem. Phys., 81, p. 552
Extrand, C.W., Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces (2002) Langmuir, 18, pp. 7991-7999
Long, J., Hyder, M., Huang, R., Chen, P., Thermodynamic modeling of contact angles on rough, heterogeneous surfaces (2005) Adv. Colloid Interface Sci., 118, pp. 173-190
Kijlstra, J., Reihs, K., Klamt, A., Roughness and topology of ultra-hydrophobic surfaces (2002) Colloids Surf., A, 206, pp. 521-529
Lu, Y., Sathasivam, S., Song, J., Crick, C.R., Carmalt, C.J., Parkin, I.P., Robust self-cleaning surfaces that function when exposed to either air or oil (2015) Science, 347, pp. 1132-1135
Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E., Wetting and spreading (2009) Rev. Mod. Phys., 81, pp. 739-805
Amirfazli, A., Neumann, A., Status of the three-phase line tension: A review (2004) Adv. Colloid Interface Sci., 110, pp. 121-141
Wang, J.Y., Betelu, S., Law, B.M., Line tension approaching a first-order wetting transition: Experimental results from contact angle measurements (2001) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 63, p. 031601
Guillemot, L., Biben, T., Galarneau, A., Vigier, G., Charlaix, E., Activated drying in hydrophobic nanopores and the line tension of water (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 19557-19562
Law, B.M., Theory of nucleated wetting (1994) Phys. Rev. Lett., 72, pp. 1698-1701
Lazaridis, M., The Effects of Surface Diffusion and Line Tension on the Mechanism of Heterogeneous Nucleation (1993) J. Colloid Interface Sci., 155, pp. 386-391
Aleksandrov, A.D., Toshev, B.V., Sheludko, A.D., Nucleation from supersaturated water vapors on n-hexadecane: Temperature dependence of critical supersaturation and line tension (1991) Langmuir, 7, p. 3211
De Gennes, P.G., Wetting: Statics and dynamics (1985) Rev. Mod. Phys., 57, pp. 827-863
Dussan, E.B., Spreading of Liquids on Solid-Surfaces - Static and Dynamic Contact Lines (1979) Annu. Rev. Fluid Mech., 11, pp. 371-400
Dobbs, H., Line Tension of n-Alkanes on Water from a Cahn-Type Theory (1999) Langmuir, 15, pp. 2586-2591
Wu, J., Zhang, M., Wang, X., Li, S., Wen, W., A Simple Approach for Local Contact Angle Determination on a Heterogeneous Surface (2011) Langmuir, 27, pp. 5705-5708
Heim, L.-O., Bonaccurso, E., Measurement of Line Tension on Droplets in the Submicrometer Range (2013) Langmuir, 29, pp. 14147-14153
Bittoun, E., Marmur, A., The Role of Multiscale Roughness in the Lotus Effect: Is It Essential for Super-Hydrophobicity? (2012) Langmuir, 28, pp. 13933-13942
Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Enhanced surface hydrophobicity by coupling of surface polarity and topography (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 15181-15185
Godawat, R., Jamadagni, S.N., Garde, S., Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 15119-15124
Acharya, H., Vembanur, S., Jamadagni, S.N., Garde, S., Mapping hydrophobicity at the nanoscale: Applications to heterogeneous surfaces and proteins (2010) Faraday Discuss., 146, pp. 353-365
Kuna, J.J., Voitchovsky, K., Singh, C., Jiang, H., Mwenifumbo, S., Ghorai, P.K., Glotzer, S.C., Stellacci, F., (2009) Nat. Mater., 8, pp. 837-842
Remsing, R., Patel, A., Water density fluctuations relevant to hydrophobic hydration are unaltered by attractions (2015) J. Chem. Phys., 142, p. 024502
Rotenberg, B., Patel, A.J., Chandler, D., Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic (2011) J. Am. Chem. Soc., 133, pp. 20521-20527
Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Koumoutsakos, P., On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes (2003) J. Phys. Chem. B, 107, pp. 1345-1352
Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Effect of Surface Polarity on Water Contact Angle and Interfacial Hydration Structure (2007) J. Phys. Chem. B, 111, pp. 9581-9587
Hua, L., Zangi, R., Berne, B.J., Hydrophobic Interactions and Dewetting between Plates with Hydrophobic and Hydrophilic Domains (2009) J. Phys. Chem. C, 113, pp. 5244-5253
Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A., Sorption isotherms of water in nanopores: The relation between hydrophobicity, adsorption pressure, and hysteresis (2014) J. Phys. Chem. C, 118, pp. 16290-16300
Hung, S.-W., Hsiao, P.-Y., Chen, C.-P., Chieng, C.-C., Wettability of Graphene-coated Surface: Free Energy Investigations using Molecular Dynamics Simulation (2015) J. Phys. Chem. C, 119, pp. 8103-8111
Lupi, L., Kastelowitz, N., Molinero, V., Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water (2014) J. Chem. Phys., 141, p. 18C508
Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Hydration Behavior under Confinement by Nanoscale Surfaces with Patterned Hydrophobicity and Hydrophilicity (2007) J. Phys. Chem. C, 111, pp. 1323-1332
Molinero, V., Moore, E.B., Water Modeled As an Intermediate Element between Carbon and Silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016
Moore, E.B., Molinero, V., Structural Transformation in Supercooled Water Controls the Crystallization Rate of Ice (2011) Nature, 479, pp. 506-508
Moore, E.B., Allen, J.T., Molinero, V., Liquid-Ice Coexistence below the Melting Temperature for Water Confined in Hydrophilic and Hydrophobic Nanopores (2012) J. Phys. Chem. C, 116, pp. 7507-7514
Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor Pressure of Water Nanodroplets (2014) J. Am. Chem. Soc., 136, pp. 4508-4514
De La Llave, E., Molinero, V., Scherlis, D.A., Role of Confinement and Surface Affinity on Filling Mechanisms and Sorption Hysteresis of Water in Nanopores (2012) J. Phys. Chem. C, 116, pp. 1833-1840
Lupi, L., Hudait, A., Molinero, V., Heterogeneous nucleation of ice on carbon surfaces (2014) J. Am. Chem. Soc., 136, pp. 3156-3164
Xu, L., Molinero, V., Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: Thermodynamics and kinetics (2010) J. Phys. Chem. B, 114, pp. 7320-7328
Baron, R., Molinero, V., Water-driven cavity-ligand binding: Comparison of thermodynamic signatures from coarse-grained and atomic-level simulations (2012) J. Chem. Theory Comput., 8, pp. 3696-3704
Lu, J., Qiu, Y., Baron, R., Molinero, V., Coarse Graining of TIP4P/2005, TIP4P-Ew, SPC/E and TIP3P to Monatomic Anisotropic Water models Using Relative Entropy Minimization (2014) J. Chem. Theory Comput., 10, pp. 4104-4120
Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995) J. Comput. Phys., 117, pp. 1-19
Martic, G., Blake, T.D., Coninck, J.D., Dynamics of Imbibition into a Pore with a Heterogeneous Surface (2005) Langmuir, 21, pp. 11201-11207
Li, D., Drop size dependence of contact angles and line tensions of solid-liquid systems (1996) Colloids Surf., A, 116, pp. 1-23
Drelich, J., The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems (1996) Colloids Surf., A, 116, pp. 43-54
Israelachvili, J.N., Gee, M.L., Contact angles on chemically heterogeneous surfaces (1989) Langmuir, 5, pp. 288-289
Factorovich, M.H., Molinero, V., Scherlis, D.A., A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems (2014) J. Chem. Phys., 140, p. 064111
Fisher, L.R., Israelachvili, J.N., Direct experimental verification of the Kelvin equation for capillary condensation (1979) Nature, 277, pp. 548-549
Luzar, A., Leung, K., Dynamics of capillary evaporation. I. Effect of morphology of hydrophobic surfaces (2000) J. Chem. Phys., 113, pp. 5836-5844
Willard, A.P., Chandler, D., Coarse-grained modeling of the interface between water and heterogeneous surfaces (2009) Faraday Discuss., 141, pp. 209-220
ISSN:00027863
DOI:10.1021/jacs.5b05242