Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces
Experimental and theoretical studies suggest that the hydrophobicity of chemically heterogeneous surfaces may present important nonlinearities as a function of composition. In this article, this issue is systematically explored using molecular simulations. The hydrophobicity is characterized by comp...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Chemical Society
2015
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | Experimental and theoretical studies suggest that the hydrophobicity of chemically heterogeneous surfaces may present important nonlinearities as a function of composition. In this article, this issue is systematically explored using molecular simulations. The hydrophobicity is characterized by computing the contact angle of water on flat interfaces and the desorption pressure of water from cylindrical nanopores. The studied interfaces are binary mixtures of hydrophilic and hydrophobic sites, with and without the ability to form hydrogen bonds with water, intercalated at different scales. Water is described with the mW coarse-grained potential, where hydrogen-bonds are modeled in the absence of explicit hydrogen atoms, via a three-body term that favors tetrahedral coordination. We found that the combination of particles exhibiting the same kind of coordination with water gives rise to a linear dependence of contact angle with respect to composition, in agreement with the Cassie model. However, when only the hydrophilic component can form hydrogen bonds, unprecedented deviations from linearity are observed, increasing the contact angle and the vapor pressure above their values in the purely hydrophobic interface. In particular, the maximum enhancement is seen when a 35% of hydrogen bonding molecules is randomly scattered on a hydrophobic background. This effect is very sensitive to the heterogeneity length-scale, being significantly attenuated when the hydrophilic domains reach a size of 2 nm. The observed behavior may be qualitatively rationalized via a simple modification of the Cassie model, by assuming a different microrugosity for hydrogen bonding and non-hydrogen bonding interfaces. © 2015 American Chemical Society. |
|---|---|
| Bibliografía: | Young, T., An essay on the cohesion of fluids (1805) Philos. Trans. R. Soc. London, 95, p. 65 Gibbs, J.W., (1961) The Scientific Papers of J. W. Gibbs, 1, p. 288. , Dover: New York, Vol Wenzel, R.N., Resistance of solid surfaces to wetting by water (1936) Ind. Eng. Chem., 28, p. 988 Cassie, A.B.D., Contact angles (1948) Discuss. Faraday Soc., 3, pp. 11-16 Marmur, A., Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not to Be? (2003) Langmuir, 19, pp. 8343-8348 Marmur, A., Bittoun, E., When Wenzel and Cassie Are Right: Reconciling Local and Global Considerations (2009) Langmuir, 25, pp. 1277-1281 Johnson, R.E., Dettre, R.H., (1993) Wettability, pp. 1-74. , In; Berg, J. C. Marcel Dekker: New York Johnson, R.E., Dettre, R.H., Brandeth, D., Dynamic Contact Angle and Contact-Angle Hysteresis (1977) J. Colloid Interface Sci., 62, pp. 205-212 Huh, C., Mason, S.G., Effects of surface roughness on wetting (theoretical) (1977) J. Colloid Interface Sci., 60, p. 11 Joanny, J.F., De Gennes, P.G., A model for contact angle hysteresis (1984) J. Chem. Phys., 81, p. 552 Extrand, C.W., Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces (2002) Langmuir, 18, pp. 7991-7999 Long, J., Hyder, M., Huang, R., Chen, P., Thermodynamic modeling of contact angles on rough, heterogeneous surfaces (2005) Adv. Colloid Interface Sci., 118, pp. 173-190 Kijlstra, J., Reihs, K., Klamt, A., Roughness and topology of ultra-hydrophobic surfaces (2002) Colloids Surf., A, 206, pp. 521-529 Lu, Y., Sathasivam, S., Song, J., Crick, C.R., Carmalt, C.J., Parkin, I.P., Robust self-cleaning surfaces that function when exposed to either air or oil (2015) Science, 347, pp. 1132-1135 Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E., Wetting and spreading (2009) Rev. Mod. Phys., 81, pp. 739-805 Amirfazli, A., Neumann, A., Status of the three-phase line tension: A review (2004) Adv. Colloid Interface Sci., 110, pp. 121-141 Wang, J.Y., Betelu, S., Law, B.M., Line tension approaching a first-order wetting transition: Experimental results from contact angle measurements (2001) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 63, p. 031601 Guillemot, L., Biben, T., Galarneau, A., Vigier, G., Charlaix, E., Activated drying in hydrophobic nanopores and the line tension of water (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 19557-19562 Law, B.M., Theory of nucleated wetting (1994) Phys. Rev. Lett., 72, pp. 1698-1701 Lazaridis, M., The Effects of Surface Diffusion and Line Tension on the Mechanism of Heterogeneous Nucleation (1993) J. Colloid Interface Sci., 155, pp. 386-391 Aleksandrov, A.D., Toshev, B.V., Sheludko, A.D., Nucleation from supersaturated water vapors on n-hexadecane: Temperature dependence of critical supersaturation and line tension (1991) Langmuir, 7, p. 3211 De Gennes, P.G., Wetting: Statics and dynamics (1985) Rev. Mod. Phys., 57, pp. 827-863 Dussan, E.B., Spreading of Liquids on Solid-Surfaces - Static and Dynamic Contact Lines (1979) Annu. Rev. Fluid Mech., 11, pp. 371-400 Dobbs, H., Line Tension of n-Alkanes on Water from a Cahn-Type Theory (1999) Langmuir, 15, pp. 2586-2591 Wu, J., Zhang, M., Wang, X., Li, S., Wen, W., A Simple Approach for Local Contact Angle Determination on a Heterogeneous Surface (2011) Langmuir, 27, pp. 5705-5708 Heim, L.-O., Bonaccurso, E., Measurement of Line Tension on Droplets in the Submicrometer Range (2013) Langmuir, 29, pp. 14147-14153 Bittoun, E., Marmur, A., The Role of Multiscale Roughness in the Lotus Effect: Is It Essential for Super-Hydrophobicity? (2012) Langmuir, 28, pp. 13933-13942 Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Enhanced surface hydrophobicity by coupling of surface polarity and topography (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 15181-15185 Godawat, R., Jamadagni, S.N., Garde, S., Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 15119-15124 Acharya, H., Vembanur, S., Jamadagni, S.N., Garde, S., Mapping hydrophobicity at the nanoscale: Applications to heterogeneous surfaces and proteins (2010) Faraday Discuss., 146, pp. 353-365 Kuna, J.J., Voitchovsky, K., Singh, C., Jiang, H., Mwenifumbo, S., Ghorai, P.K., Glotzer, S.C., Stellacci, F., (2009) Nat. Mater., 8, pp. 837-842 Remsing, R., Patel, A., Water density fluctuations relevant to hydrophobic hydration are unaltered by attractions (2015) J. Chem. Phys., 142, p. 024502 Rotenberg, B., Patel, A.J., Chandler, D., Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic (2011) J. Am. Chem. Soc., 133, pp. 20521-20527 Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Koumoutsakos, P., On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes (2003) J. Phys. Chem. B, 107, pp. 1345-1352 Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Effect of Surface Polarity on Water Contact Angle and Interfacial Hydration Structure (2007) J. Phys. Chem. B, 111, pp. 9581-9587 Hua, L., Zangi, R., Berne, B.J., Hydrophobic Interactions and Dewetting between Plates with Hydrophobic and Hydrophilic Domains (2009) J. Phys. Chem. C, 113, pp. 5244-5253 Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A., Sorption isotherms of water in nanopores: The relation between hydrophobicity, adsorption pressure, and hysteresis (2014) J. Phys. Chem. C, 118, pp. 16290-16300 Hung, S.-W., Hsiao, P.-Y., Chen, C.-P., Chieng, C.-C., Wettability of Graphene-coated Surface: Free Energy Investigations using Molecular Dynamics Simulation (2015) J. Phys. Chem. C, 119, pp. 8103-8111 Lupi, L., Kastelowitz, N., Molinero, V., Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water (2014) J. Chem. Phys., 141, p. 18C508 Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Hydration Behavior under Confinement by Nanoscale Surfaces with Patterned Hydrophobicity and Hydrophilicity (2007) J. Phys. Chem. C, 111, pp. 1323-1332 Molinero, V., Moore, E.B., Water Modeled As an Intermediate Element between Carbon and Silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016 Moore, E.B., Molinero, V., Structural Transformation in Supercooled Water Controls the Crystallization Rate of Ice (2011) Nature, 479, pp. 506-508 Moore, E.B., Allen, J.T., Molinero, V., Liquid-Ice Coexistence below the Melting Temperature for Water Confined in Hydrophilic and Hydrophobic Nanopores (2012) J. Phys. Chem. C, 116, pp. 7507-7514 Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor Pressure of Water Nanodroplets (2014) J. Am. Chem. Soc., 136, pp. 4508-4514 De La Llave, E., Molinero, V., Scherlis, D.A., Role of Confinement and Surface Affinity on Filling Mechanisms and Sorption Hysteresis of Water in Nanopores (2012) J. Phys. Chem. C, 116, pp. 1833-1840 Lupi, L., Hudait, A., Molinero, V., Heterogeneous nucleation of ice on carbon surfaces (2014) J. Am. Chem. Soc., 136, pp. 3156-3164 Xu, L., Molinero, V., Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: Thermodynamics and kinetics (2010) J. Phys. Chem. B, 114, pp. 7320-7328 Baron, R., Molinero, V., Water-driven cavity-ligand binding: Comparison of thermodynamic signatures from coarse-grained and atomic-level simulations (2012) J. Chem. Theory Comput., 8, pp. 3696-3704 Lu, J., Qiu, Y., Baron, R., Molinero, V., Coarse Graining of TIP4P/2005, TIP4P-Ew, SPC/E and TIP3P to Monatomic Anisotropic Water models Using Relative Entropy Minimization (2014) J. Chem. Theory Comput., 10, pp. 4104-4120 Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995) J. Comput. Phys., 117, pp. 1-19 Martic, G., Blake, T.D., Coninck, J.D., Dynamics of Imbibition into a Pore with a Heterogeneous Surface (2005) Langmuir, 21, pp. 11201-11207 Li, D., Drop size dependence of contact angles and line tensions of solid-liquid systems (1996) Colloids Surf., A, 116, pp. 1-23 Drelich, J., The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems (1996) Colloids Surf., A, 116, pp. 43-54 Israelachvili, J.N., Gee, M.L., Contact angles on chemically heterogeneous surfaces (1989) Langmuir, 5, pp. 288-289 Factorovich, M.H., Molinero, V., Scherlis, D.A., A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems (2014) J. Chem. Phys., 140, p. 064111 Fisher, L.R., Israelachvili, J.N., Direct experimental verification of the Kelvin equation for capillary condensation (1979) Nature, 277, pp. 548-549 Luzar, A., Leung, K., Dynamics of capillary evaporation. I. Effect of morphology of hydrophobic surfaces (2000) J. Chem. Phys., 113, pp. 5836-5844 Willard, A.P., Chandler, D., Coarse-grained modeling of the interface between water and heterogeneous surfaces (2009) Faraday Discuss., 141, pp. 209-220 |
| ISSN: | 00027863 |
| DOI: | 10.1021/jacs.5b05242 |