Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces

Experimental and theoretical studies suggest that the hydrophobicity of chemically heterogeneous surfaces may present important nonlinearities as a function of composition. In this article, this issue is systematically explored using molecular simulations. The hydrophobicity is characterized by comp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Factorovich, M.H
Otros Autores: Molinero, V., Scherlis, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14420caa a22013337a 4500
001 PAPER-13329
003 AR-BaUEN
005 20230518204339.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84941730384 
024 7 |2 cas  |a hydrogen, 12385-13-6, 1333-74-0; water, 7732-18-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JACSA 
100 1 |a Factorovich, M.H. 
245 1 0 |a Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces 
260 |b American Chemical Society  |c 2015 
270 1 0 |m Scherlis, D.A.; Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina 
506 |2 openaire  |e Política editorial 
504 |a Young, T., An essay on the cohesion of fluids (1805) Philos. Trans. R. Soc. London, 95, p. 65 
504 |a Gibbs, J.W., (1961) The Scientific Papers of J. W. Gibbs, 1, p. 288. , Dover: New York, Vol 
504 |a Wenzel, R.N., Resistance of solid surfaces to wetting by water (1936) Ind. Eng. Chem., 28, p. 988 
504 |a Cassie, A.B.D., Contact angles (1948) Discuss. Faraday Soc., 3, pp. 11-16 
504 |a Marmur, A., Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not to Be? (2003) Langmuir, 19, pp. 8343-8348 
504 |a Marmur, A., Bittoun, E., When Wenzel and Cassie Are Right: Reconciling Local and Global Considerations (2009) Langmuir, 25, pp. 1277-1281 
504 |a Johnson, R.E., Dettre, R.H., (1993) Wettability, pp. 1-74. , In; Berg, J. C. Marcel Dekker: New York 
504 |a Johnson, R.E., Dettre, R.H., Brandeth, D., Dynamic Contact Angle and Contact-Angle Hysteresis (1977) J. Colloid Interface Sci., 62, pp. 205-212 
504 |a Huh, C., Mason, S.G., Effects of surface roughness on wetting (theoretical) (1977) J. Colloid Interface Sci., 60, p. 11 
504 |a Joanny, J.F., De Gennes, P.G., A model for contact angle hysteresis (1984) J. Chem. Phys., 81, p. 552 
504 |a Extrand, C.W., Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces (2002) Langmuir, 18, pp. 7991-7999 
504 |a Long, J., Hyder, M., Huang, R., Chen, P., Thermodynamic modeling of contact angles on rough, heterogeneous surfaces (2005) Adv. Colloid Interface Sci., 118, pp. 173-190 
504 |a Kijlstra, J., Reihs, K., Klamt, A., Roughness and topology of ultra-hydrophobic surfaces (2002) Colloids Surf., A, 206, pp. 521-529 
504 |a Lu, Y., Sathasivam, S., Song, J., Crick, C.R., Carmalt, C.J., Parkin, I.P., Robust self-cleaning surfaces that function when exposed to either air or oil (2015) Science, 347, pp. 1132-1135 
504 |a Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E., Wetting and spreading (2009) Rev. Mod. Phys., 81, pp. 739-805 
504 |a Amirfazli, A., Neumann, A., Status of the three-phase line tension: A review (2004) Adv. Colloid Interface Sci., 110, pp. 121-141 
504 |a Wang, J.Y., Betelu, S., Law, B.M., Line tension approaching a first-order wetting transition: Experimental results from contact angle measurements (2001) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 63, p. 031601 
504 |a Guillemot, L., Biben, T., Galarneau, A., Vigier, G., Charlaix, E., Activated drying in hydrophobic nanopores and the line tension of water (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 19557-19562 
504 |a Law, B.M., Theory of nucleated wetting (1994) Phys. Rev. Lett., 72, pp. 1698-1701 
504 |a Lazaridis, M., The Effects of Surface Diffusion and Line Tension on the Mechanism of Heterogeneous Nucleation (1993) J. Colloid Interface Sci., 155, pp. 386-391 
504 |a Aleksandrov, A.D., Toshev, B.V., Sheludko, A.D., Nucleation from supersaturated water vapors on n-hexadecane: Temperature dependence of critical supersaturation and line tension (1991) Langmuir, 7, p. 3211 
504 |a De Gennes, P.G., Wetting: Statics and dynamics (1985) Rev. Mod. Phys., 57, pp. 827-863 
504 |a Dussan, E.B., Spreading of Liquids on Solid-Surfaces - Static and Dynamic Contact Lines (1979) Annu. Rev. Fluid Mech., 11, pp. 371-400 
504 |a Dobbs, H., Line Tension of n-Alkanes on Water from a Cahn-Type Theory (1999) Langmuir, 15, pp. 2586-2591 
504 |a Wu, J., Zhang, M., Wang, X., Li, S., Wen, W., A Simple Approach for Local Contact Angle Determination on a Heterogeneous Surface (2011) Langmuir, 27, pp. 5705-5708 
504 |a Heim, L.-O., Bonaccurso, E., Measurement of Line Tension on Droplets in the Submicrometer Range (2013) Langmuir, 29, pp. 14147-14153 
504 |a Bittoun, E., Marmur, A., The Role of Multiscale Roughness in the Lotus Effect: Is It Essential for Super-Hydrophobicity? (2012) Langmuir, 28, pp. 13933-13942 
504 |a Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Enhanced surface hydrophobicity by coupling of surface polarity and topography (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 15181-15185 
504 |a Godawat, R., Jamadagni, S.N., Garde, S., Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 15119-15124 
504 |a Acharya, H., Vembanur, S., Jamadagni, S.N., Garde, S., Mapping hydrophobicity at the nanoscale: Applications to heterogeneous surfaces and proteins (2010) Faraday Discuss., 146, pp. 353-365 
504 |a Kuna, J.J., Voitchovsky, K., Singh, C., Jiang, H., Mwenifumbo, S., Ghorai, P.K., Glotzer, S.C., Stellacci, F., (2009) Nat. Mater., 8, pp. 837-842 
504 |a Remsing, R., Patel, A., Water density fluctuations relevant to hydrophobic hydration are unaltered by attractions (2015) J. Chem. Phys., 142, p. 024502 
504 |a Rotenberg, B., Patel, A.J., Chandler, D., Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic (2011) J. Am. Chem. Soc., 133, pp. 20521-20527 
504 |a Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Koumoutsakos, P., On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes (2003) J. Phys. Chem. B, 107, pp. 1345-1352 
504 |a Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Effect of Surface Polarity on Water Contact Angle and Interfacial Hydration Structure (2007) J. Phys. Chem. B, 111, pp. 9581-9587 
504 |a Hua, L., Zangi, R., Berne, B.J., Hydrophobic Interactions and Dewetting between Plates with Hydrophobic and Hydrophilic Domains (2009) J. Phys. Chem. C, 113, pp. 5244-5253 
504 |a Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A., Sorption isotherms of water in nanopores: The relation between hydrophobicity, adsorption pressure, and hysteresis (2014) J. Phys. Chem. C, 118, pp. 16290-16300 
504 |a Hung, S.-W., Hsiao, P.-Y., Chen, C.-P., Chieng, C.-C., Wettability of Graphene-coated Surface: Free Energy Investigations using Molecular Dynamics Simulation (2015) J. Phys. Chem. C, 119, pp. 8103-8111 
504 |a Lupi, L., Kastelowitz, N., Molinero, V., Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water (2014) J. Chem. Phys., 141, p. 18C508 
504 |a Giovambattista, N., Debenedetti, P.G., Rossky, P.J., Hydration Behavior under Confinement by Nanoscale Surfaces with Patterned Hydrophobicity and Hydrophilicity (2007) J. Phys. Chem. C, 111, pp. 1323-1332 
504 |a Molinero, V., Moore, E.B., Water Modeled As an Intermediate Element between Carbon and Silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016 
504 |a Moore, E.B., Molinero, V., Structural Transformation in Supercooled Water Controls the Crystallization Rate of Ice (2011) Nature, 479, pp. 506-508 
504 |a Moore, E.B., Allen, J.T., Molinero, V., Liquid-Ice Coexistence below the Melting Temperature for Water Confined in Hydrophilic and Hydrophobic Nanopores (2012) J. Phys. Chem. C, 116, pp. 7507-7514 
504 |a Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor Pressure of Water Nanodroplets (2014) J. Am. Chem. Soc., 136, pp. 4508-4514 
504 |a De La Llave, E., Molinero, V., Scherlis, D.A., Role of Confinement and Surface Affinity on Filling Mechanisms and Sorption Hysteresis of Water in Nanopores (2012) J. Phys. Chem. C, 116, pp. 1833-1840 
504 |a Lupi, L., Hudait, A., Molinero, V., Heterogeneous nucleation of ice on carbon surfaces (2014) J. Am. Chem. Soc., 136, pp. 3156-3164 
504 |a Xu, L., Molinero, V., Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: Thermodynamics and kinetics (2010) J. Phys. Chem. B, 114, pp. 7320-7328 
504 |a Baron, R., Molinero, V., Water-driven cavity-ligand binding: Comparison of thermodynamic signatures from coarse-grained and atomic-level simulations (2012) J. Chem. Theory Comput., 8, pp. 3696-3704 
504 |a Lu, J., Qiu, Y., Baron, R., Molinero, V., Coarse Graining of TIP4P/2005, TIP4P-Ew, SPC/E and TIP3P to Monatomic Anisotropic Water models Using Relative Entropy Minimization (2014) J. Chem. Theory Comput., 10, pp. 4104-4120 
504 |a Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995) J. Comput. Phys., 117, pp. 1-19 
504 |a Martic, G., Blake, T.D., Coninck, J.D., Dynamics of Imbibition into a Pore with a Heterogeneous Surface (2005) Langmuir, 21, pp. 11201-11207 
504 |a Li, D., Drop size dependence of contact angles and line tensions of solid-liquid systems (1996) Colloids Surf., A, 116, pp. 1-23 
504 |a Drelich, J., The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems (1996) Colloids Surf., A, 116, pp. 43-54 
504 |a Israelachvili, J.N., Gee, M.L., Contact angles on chemically heterogeneous surfaces (1989) Langmuir, 5, pp. 288-289 
504 |a Factorovich, M.H., Molinero, V., Scherlis, D.A., A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems (2014) J. Chem. Phys., 140, p. 064111 
504 |a Fisher, L.R., Israelachvili, J.N., Direct experimental verification of the Kelvin equation for capillary condensation (1979) Nature, 277, pp. 548-549 
504 |a Luzar, A., Leung, K., Dynamics of capillary evaporation. I. Effect of morphology of hydrophobic surfaces (2000) J. Chem. Phys., 113, pp. 5836-5844 
504 |a Willard, A.P., Chandler, D., Coarse-grained modeling of the interface between water and heterogeneous surfaces (2009) Faraday Discuss., 141, pp. 209-220 
520 3 |a Experimental and theoretical studies suggest that the hydrophobicity of chemically heterogeneous surfaces may present important nonlinearities as a function of composition. In this article, this issue is systematically explored using molecular simulations. The hydrophobicity is characterized by computing the contact angle of water on flat interfaces and the desorption pressure of water from cylindrical nanopores. The studied interfaces are binary mixtures of hydrophilic and hydrophobic sites, with and without the ability to form hydrogen bonds with water, intercalated at different scales. Water is described with the mW coarse-grained potential, where hydrogen-bonds are modeled in the absence of explicit hydrogen atoms, via a three-body term that favors tetrahedral coordination. We found that the combination of particles exhibiting the same kind of coordination with water gives rise to a linear dependence of contact angle with respect to composition, in agreement with the Cassie model. However, when only the hydrophilic component can form hydrogen bonds, unprecedented deviations from linearity are observed, increasing the contact angle and the vapor pressure above their values in the purely hydrophobic interface. In particular, the maximum enhancement is seen when a 35% of hydrogen bonding molecules is randomly scattered on a hydrophobic background. This effect is very sensitive to the heterogeneity length-scale, being significantly attenuated when the hydrophilic domains reach a size of 2 nm. The observed behavior may be qualitatively rationalized via a simple modification of the Cassie model, by assuming a different microrugosity for hydrogen bonding and non-hydrogen bonding interfaces. © 2015 American Chemical Society.  |l eng 
593 |a Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States 
690 1 0 |a ATOMS 
690 1 0 |a BINARY MIXTURES 
690 1 0 |a CONTACT ANGLE 
690 1 0 |a HYDROPHILICITY 
690 1 0 |a HYDROPHOBICITY 
690 1 0 |a COARSE-GRAINED POTENTIAL 
690 1 0 |a CYLINDRICAL NANOPORES 
690 1 0 |a HETEROGENEOUS SURFACE 
690 1 0 |a HYDROPHILIC AND HYDROPHOBIC 
690 1 0 |a HYDROPHILIC COMPONENTS 
690 1 0 |a HYDROPHOBIC INTERFACE 
690 1 0 |a MOLECULAR SIMULATIONS 
690 1 0 |a TETRAHEDRAL COORDINATION 
690 1 0 |a HYDROGEN BONDS 
690 1 0 |a HYDROGEN 
690 1 0 |a WATER 
690 1 0 |a ARTICLE 
690 1 0 |a CONTACT ANGLE 
690 1 0 |a DESORPTION 
690 1 0 |a HYDROGEN BOND 
690 1 0 |a HYDROPHOBICITY 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a NANOPORE 
690 1 0 |a VAPOR PRESSURE 
700 1 |a Molinero, V. 
700 1 |a Scherlis, D.A. 
773 0 |d American Chemical Society, 2015  |g v. 137  |h pp. 10618-10623  |k n. 33  |p J. Am. Chem. Soc.  |x 00027863  |w (AR-BaUEN)CENRE-19  |t Journal of the American Chemical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941730384&doi=10.1021%2fjacs.5b05242&partnerID=40&md5=b84d6f5751899a5422a689c14278f9fa  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jacs.5b05242  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00027863_v137_n33_p10618_Factorovich  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v137_n33_p10618_Factorovich  |y Registro en la Biblioteca Digital 
961 |a paper_00027863_v137_n33_p10618_Factorovich  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 74282