k-tuple colorings of the Cartesian product of graphs

A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonomo, F.
Otros Autores: Koch, I., Torres, P., Valencia-Pabon, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2017
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05196caa a22007577a 4500
001 PAPER-13070
003 AR-BaUEN
005 20230518204319.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85014588554 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a DAMAD 
100 1 |a Bonomo, F. 
245 1 0 |a k-tuple colorings of the Cartesian product of graphs 
260 |b Elsevier B.V.  |c 2017 
270 1 0 |m Torres, P.; Universidad Nacional de Rosario and CONICETArgentina; email: ptorres@fceia.unr.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Albertson, M.O., Collins, K.L., Homomorphisms of 3 -chromatic graphs (1985) Discrete Math., 54, pp. 127-132 
504 |a Berge, C., Graphs and Hypergraphs (1976), North–Holland Amsterdam; Bollobás, B., Thomason, A., Set colourings of graphs (1979) Discrete Math., 25 (1), pp. 21-26 
504 |a Erdős, P., Ko, C., Rado, R., Intersection theorems for systems of finite sets (1961) Quart. J. Math., 12, pp. 313-320 
504 |a Hahn, G., Hell, P., Poljak, S., On the ultimate independence ratio of a graph (1995) European J. Combin., 16, pp. 253-261 
504 |a Hilton, A.J.W., Milner, E.C., Some intersections theorems for systems of finite sets (1967) Quart. J. Math., 18, pp. 369-384 
504 |a Larose, B., Laviolette, F., Tardif, C., On normal Cayley graphs and Hom-idempotent graphs (1998) European J. Combin., 19, pp. 867-881 
504 |a Lovász, L., Kneser's conjecture, chromatic number and homotopy (1978) J. Combin. Theory Ser. A, 25, pp. 319-324 
504 |a Sabidussi, G., Graphs with given group and given graph-theoretical properties (1957) Canad. J. Math., 9, pp. 515-525 
504 |a Stahl, S., n-Tuple colorings and associated graphs (1976) J. Combin. Theory Ser. B, 20, pp. 185-203 
504 |a Stahl, S., The multichromatic numbers of some Kneser graphs (1998) Discrete Math., 185, pp. 287-291 
504 |a Vizing, V.G., Cartesian product of graphs (1963) Vych. Sys., 9, pp. 30-43. , (in Russian); In Computer Elements and Systems, 1–9:352–365, 1966 (English translation) 
520 3 |a A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G□H)=max{χ(G),χ(H)}. In this paper, we show that there exist graphs G and H such that χk(G□H)>max{χk(G),χk(H)} for k≥2. Moreover, we also show that there exist graph families such that, for any k≥1, the k-tuple chromatic number of their Cartesian product is equal to the maximum k-tuple chromatic number of its factors. © 2017 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: JCJC CombPhysMat2Tens 
536 |a Detalles de la financiación: PICT 2012-1324 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 20020130100808BA 
536 |a Detalles de la financiación: PIP 112-201201-00450CO 
536 |a Detalles de la financiación: Partially supported by MathAmSud Project 13MATH-07 (Argentina?Brazil?Chile?France), UBACyT grant 20020130100808BA, CONICET PIP 112-201201-00450CO, ANPCyT PICT 2012-1324 (Argentina), and by the French ANR JCJC CombPhysMat2Tens grant. 
593 |a CONICET and DC, FCEN, Universidad de Buenos Aires, Argentina 
593 |a Instituto de Industria, Universidad Nacional de General Sarmiento, Argentina 
593 |a Universidad Nacional de Rosario and CONICET, Argentina 
593 |a Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villetaneuse, France 
690 1 0 |a CARTESIAN PRODUCT OF GRAPHS 
690 1 0 |a CAYLEY GRAPHS 
690 1 0 |a HOM-IDEMPOTENT GRAPHS 
690 1 0 |a K-TUPLE COLORINGS 
690 1 0 |a KNESER GRAPHS 
690 1 0 |a GRAPHIC METHODS 
690 1 0 |a SET THEORY 
690 1 0 |a CARTESIAN PRODUCT OF GRAPHS 
690 1 0 |a CARTESIAN PRODUCTS 
690 1 0 |a CAYLEY GRAPHS 
690 1 0 |a CHROMATIC NUMBER 
690 1 0 |a GRAPH G 
690 1 0 |a IDEMPOTENT 
690 1 0 |a KNESER GRAPH 
690 1 0 |a GRAPH THEORY 
650 1 7 |2 spines  |a COLOR 
700 1 |a Koch, I. 
700 1 |a Torres, P. 
700 1 |a Valencia-Pabon, M. 
773 0 |d Elsevier B.V., 2017  |g v. 245  |h pp. 177-182  |p Discrete Appl Math  |x 0166218X  |w (AR-BaUEN)CENRE-310  |t Discrete Applied Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014588554&doi=10.1016%2fj.dam.2017.02.003&partnerID=40&md5=20f6329240cec33bc8a67f40ed24e3f3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.dam.2017.02.003  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0166218X_v245_n_p177_Bonomo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v245_n_p177_Bonomo  |y Registro en la Biblioteca Digital 
961 |a paper_0166218X_v245_n_p177_Bonomo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 74023