Novel (Bio)chemical and (Photo)physical probes for imaging living cells

The living cell mediates its internal state and the exchange of substances and information with its environment primarily via protein-protein interactions. The spatio-temporal disposition of structural, catalytic, and regulatory proteins defines the nature and functional state of the cell. Signaling...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jares-Erijman, E.A
Otros Autores: Spagnuolo, C., Giordano, L., Etchehon, M., Kawior, J., Mañalich-Arana, M.V, Bossi, M., Lidke, D.S, Post, J.N, Vermeij, R.J, Heintzmann, R., Lidke, K.A, Arndt-Jovin, D.J, Jovin, T.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer US 2005
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13392caa a22009737a 4500
001 PAPER-12857
003 AR-BaUEN
005 20230518204303.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33748552242 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Jares-Erijman, E.A. 
245 1 0 |a Novel (Bio)chemical and (Photo)physical probes for imaging living cells 
260 |b Springer US  |c 2005 
270 1 0 |m Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Yarden, Y., Slikowski, M.X., Untangling the ErbB signalling network (2001) Nat. Rev. Mol. Cell Biol., 2, pp. 127-137 
504 |a Clynes, R.A., Towers, T.L., Presta, L.G., Ravetch, J.V., Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets (2000) Nature Med., 6, pp. 443-446 
504 |a Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., Cormier, M.J., Primary structure of the Aequorea-victoria green fluorescent protein (1992) Gene, 111, pp. 229-233 
504 |a Zhang, J., Campbell, R.E., Ting, A.Y., Tsien, R.Y., Creating new fluorescent probes for cell biology (2002) Nat. Rev. Mol. Cell Biol., 3, pp. 906-918 
504 |a Lippincott-Schwartz, J., Patterson, G.H., Development and use of fluorescent protein markers in living cells (2003) Science, 300, pp. 87-91 
504 |a Miyawaki, A., Visualization of the spatial and temporal dynamics of intracellular signaling (2003) Dev. Cell, 4, pp. 295-305 
504 |a Sato, M., Ozawa, T., Inukai, K., Asano, T., Umezawa, Y., Fluorescent indicators for imaging protein phosphorylation in single living cells (2002) Nat. Biotechnol., 20, pp. 287-294 
504 |a Zacharias, D.A., Violin, J.D., Newton, A.C., Tsien, R.Y., Partitioning of lipidmodified monomeric GFPs into membrane microdomains of live cells (2002) Science, 296, pp. 913-916 
504 |a Zeytun, A., Jeromin Scalettar, B.A., Waldo, G.S., Bradbury, A.R.M., Fluorobodies combine GFP fluorescence with the binding characteristics of antibodies (2003) Nat. Biotechnol., 21, pp. 1473-1479 
504 |a Kurokawa, K., Mochizuki, N., Ohba, Y., Mizuno, H., Miyawaki, A., Matsuda, M., A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo (2001) J. Biol. Chem., 276, pp. 31305-31310 
504 |a Wiedenmann, J., Schenk, A., Röcker, C., Girod, A., Spindler, K.-D., Nienhaus, G.U., A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmea quadricolor (Anthoza Actinaria) (2002) Proc. Nat. Acad. Sci. U.S.A., 99, pp. 11646-11651 
504 |a Patterson, G.H., Lippincott-Schwartz, J., A photoactivatable GFP for selective photolabeling of proteins and cells (2002) Science, 297, pp. 1873-1877 
504 |a Haker, A., Hendriks, J., Van Stokkum, I.H.M., Heberle, J., Hellingwerf, K.J., Crielaard, W., Genach, T., Two photocycles of photoactive yellow protein from Rhodobacter sphaeroides (2003) J. Biol. Chem., 278, pp. 8442-8451 
504 |a Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., Miyawaki, A., A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications (2002) Nat. Biotechnol., 20, pp. 87-90 
504 |a Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A., Tsien, R.Y., Reducing the environmental sensitivity of yellow fluorescent protein (2001) J. Biol. Chem., 276, pp. 29188-29194 
504 |a Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., Tsien, R.Y., A monomeric red fluorescent protein (2002) Proc. Nat. Acad. Sci. U.S.A., 99, pp. 7877-7882 
504 |a Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., Tsien, R.Y., Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin (1997) Nature, 388, pp. 882-887 
504 |a Jares-Erijman, E.A., Jovin, T.M., FRET imaging (2003) Nat. Biotechnol., 21, pp. 1387-1395 
504 |a Clegg, R.M., Fluorescence resonance energy transfer (1995) Curr. Opin. Biotechn., 6, pp. 103-110 
504 |a Clegg, R.M., Gadella, Jr.T.W.J., Jovin, T.M., Lifetime-resolved fluorescence imaging (1994) Proc. SPIE, 2137, pp. 105-118 
504 |a Patterson, G.H., Piston, D.W., Barisas, B.G., Forster distances between green fluorescent protein pairs (2000) Anal. Biochem., 284, pp. 438-440 
504 |a Hu, C.D., Kerppola, T.K., Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis (2003) Nat. Biotechnol., 21, pp. 539-545 
504 |a Ozawa, T., Umezawa, Y., Peptide assemblies in living cells. Methods for detecting protein-protein interactions (2002) Supramol. Chem., 14, pp. 271-280 
504 |a Marriott, G., Parker, I., (2003) Methods Enzymol Biophotonics Part B., 361. , Academic Press San Diego CA 
504 |a Riven, I., Kalmanzon, E., Segev, L., Reuveny, E., Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed (2003) Neuron, 38, pp. 225-235 
504 |a Griffin, B.A., Adams, S.R., Jones, J., Tsien, R.Y., Fluorescent labeling of recombinant proteins in living cells with FlAsH (2000) Methods Enzymol., 327, pp. 565-578 
504 |a Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Sosinsky, G.E., Ellisman, M.H., Multicolor and electron microscopic imaging of connexin trafficking (2002) Science, 296, pp. 503-507 
504 |a Falk, M.M., Genetic tags for labelling live cells: Gap junctions and beyond (2002) Trends Cell Biol., 12, pp. 399-404 
504 |a Stroffekova, K., Proenza, C., Beam, K.G., The protein-labelling reagent F1AsHEDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins (2001) Eur. J. Physiol., 442, pp. 859-866 
504 |a Giordano, L., Jovin, T.M., Irie, M., Jares-Erijman, E.A., Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET) (2002) J. Am. Chem. Soc., 124, pp. 7481-7489 
504 |a Song, L., Jares-Erijman, E.A., Jovin, T.M., A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET) (2002) J. Photochem. Photobiol. A, 150, pp. 177-185 
504 |a Clayton, A.H.A., Hanley, Q.S., Arndt-Jovin, D.J., Subramaniam, V., Jovin, T.M., Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM) (2002) Biophys. J., 83, pp. 1631-1649 
504 |a Lidke, D.S., Nagy, P., Barisas, B.G., Heintzmann, R., Post, J.N., Lidke, K.A., Clayton, A.H.A., Jovin, T.M., Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET) (2003) Biochem. Soc. Trans., 31, pp. 1020-1027 
504 |a Schlessinger, J., Ligand-induced receptor-mediated dimerization and activation of EGF receptor (2002) Cell, 110, pp. 669-672 
504 |a Gadella Jr., T.W.J., Jovin, T.M., Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy: A stereochemical model for tyrosine kinase receptor activation (1995) J. Cell Biol., 129, pp. 1543-1558 
504 |a Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Bruchez, M.P., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots (2003) Nat Biotechnol., 21, pp. 41-46 
504 |a Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M., Long-term multiple color imaging of live cells using quantum dot bioconjugates (2003) Nat. Biotechnol., 21, pp. 47-51 
504 |a Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., Webb, W.W., Water-soluble quantum dots for multiphoton fluorescence imaging in vivo (2003) Science, 300, pp. 1434-1436 
504 |a Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H., Jares- Erijman, E.A., Jovin, T.M., Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction (2004) Nat. Biotechnol., , in press DOI: 10.1038/Nbt1929 
504 |a Medintz, I.L., Trammell, S.A., Mattoussi, H., Mauro, J.M., Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor (2004) J. Am. Chem. Soc., 126, pp. 30-31 
504 |a Clapp, A.R., Medintz, I.L., Mauro, J.M., Fisher, B.R., Bawendi, M.G., Mattoussi, H., Fluorescence Resonance Energy Transfer between Quantum Dot donors and dye-labeled protein acceptors (2004) J. Am. Chem. Soc., 126, pp. 301-310 
504 |a Brock, R., Jovin, T., Quantitative image analysis of cellular protein translocation induced by magnetic microspheres: Application to the EGF receptor (2003) Cytometry A, 52 A, pp. 1-11 
504 |a Brock, R., Jovin, T.M., Heterogeneity of signal transduction at the subcellular level: Microsphere-based focal EGF receptor activation and stimulation of Shc translocation (2001) J. Cell Sci., 114, pp. 2437-2447 
504 |a Verveer, P.J., Wouters, F.S., Reynolds, A.R., Bastiaens, P.I.H., Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane (2000) Science, 290, pp. 1567-1570 
520 3 |a The living cell mediates its internal state and the exchange of substances and information with its environment primarily via protein-protein interactions. The spatio-temporal disposition of structural, catalytic, and regulatory proteins defines the nature and functional state of the cell. Signaling mechanisms, as a prominent example, occupy a central role in this process, leading to a set of canonical questions, challenges and strategies (Table 1). In applying fluorescence microscopy in cell biology to a particular system, one is faced with a multiplicity of molecules at every level of organization (external, membrane, cytoplasm). The elucidation of such an extensive degree of vertical and horizontal networking, extending into the downstream signaling cascades, requires imaging technology in addition to the classical biochemical and molecular biological methods based largely on classical "divide (separate) and conquer" protocols (Table 2). For example, the "orphan" (ligand-less) erbB2/HER2 receptor tyrosine kinase (RTK) is overexpressed and highly activated in a large fraction of breast tumors, forming characteristic homo- and heterodimers with three other members of this RTK family1. These are targets for the only anti-tumor immunotherapies in present clinical use, exemplified by the antibody specific for HER2, Herceptin2. Unfortunately, the modes of action of such agents are poorly understood. Thus in order to elucidate the repertoire of the RTKs under normal and pathological conditions one must evaluate their localization and molecular structural and functional state(s) in defined cell populations be it cell culture lines or primary patient-derived cells. The thermodynamic and kinetic complexity is evident from the minimal scheme defining the interplay between ligand binding conformational states (2) and association states (2) for a prototypic growth factor receptor (Figure 1). Although Table 2 cannot be regarded as comprehensive it emphasizes that in addition to established biochemical and genetic approaches physico-chemical techniques offer the versatility required for assessing molecular interactions in the cell. In particular fluorescence unites the features of great sensitivity and selectivity with high contrast even under conditions of low local molecular density i.e. concentration. © 2005 Springer Science + Business Media, Inc. All rights reserved.  |l eng 
593 |a Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany 
700 1 |a Spagnuolo, C. 
700 1 |a Giordano, L. 
700 1 |a Etchehon, M. 
700 1 |a Kawior, J. 
700 1 |a Mañalich-Arana, M.V. 
700 1 |a Bossi, M. 
700 1 |a Lidke, D.S. 
700 1 |a Post, J.N. 
700 1 |a Vermeij, R.J. 
700 1 |a Heintzmann, R. 
700 1 |a Lidke, K.A. 
700 1 |a Arndt-Jovin, D.J. 
700 1 |a Jovin, T.M. 
773 0 |d Springer US, 2005  |h pp. 99-118  |p Supramolecular Struct. and Funct. 8  |z 0306486628  |z 9780306486616  |t Supramolecular Structure and Function 8 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748552242&doi=10.1007%2f0-306-48662-8_6&partnerID=40&md5=a4ec1c532c0eb64d41f7ad9de76dea08  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/0-306-48662-8_6  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03064866_v_n_p99_JaresErijman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03064866_v_n_p99_JaresErijman  |y Registro en la Biblioteca Digital 
961 |a paper_03064866_v_n_p99_JaresErijman  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 73810