Coherent state propagation in open systems

We introduce the generalized coherent states (G.C.S.) as eigenstates of the unitarily equivalent representations of the annihilation operator. The G.C.S. extension in phase space evolves with time and keeps the uncertainly product (with correlation) at its minimum. The conditions for the propagation...

Descripción completa

Detalles Bibliográficos
Autor principal: Remaud, B.
Otros Autores: Dorso, Claudio Oscar, Hernandez, E.S
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1982
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04473caa a22005897a 4500
001 PAPER-1254
003 AR-BaUEN
005 20250226103543.0
008 190411s1982 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-4244049096 
030 |a PHYAD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Remaud, B. 
245 1 0 |a Coherent state propagation in open systems 
260 |c 1982 
270 1 0 |m Remaud, B.; Institut de Physique, 2, chemin de la Houssinière, 44072 Nantes Cedex, France 
504 |a Hofman, Siemens, Linear response theory for dissipation in heavy-ion collisions (1976) Nuclear Physics A, 257 A, p. 165 
504 |a Hofman, Siemens, On the dynamics of statistical fluctuations in heavy ion collisions (1977) Nuclear Physics A, 275 A, p. 464 
504 |a Hofmann, Grégoire, Lucas, Ngô, (1979) Z. Phys., 293 A, p. 229 
504 |a Hernandez, Myers, Randrup, Remaud, (1981) Nucl. Phys., 361 A, p. 483 
504 |a Hasse, On the quantum mechanical treatment of dissipative systems (1975) Journal of Mathematical Physics, 16, p. 2005 
504 |a Remaud, Hernandez, (1980) J. Phys., 13 A, p. 2013 
504 |a Hasse, (1979) Nucl. Phys., 318 A, p. 480 
504 |a Dorso, Hernandez, (1981) Nucl. Phys., 372 A, p. 215 
504 |a H. Dekker, Physics Reports preprint; Argawal, Brownian Motion of a Quantum Oscillator (1971) Physical Review A, 4 A, p. 739 
504 |a Hernandez, Remaud, (1980) Phys. Lett., 75 A, p. 269 
504 |a Remaud, Hernandez, Constants of motion and non-stationary wave functions for the damped, time-dependent harmonic oscillator (1980) Physica A: Statistical Mechanics and its Applications, 103 A, p. 35 
504 |a Hernandez, Remaud, General properties of gausson-conserving descriptions of quantal damped motion (1981) Physica A: Statistical Mechanics and its Applications, 105 A, p. 130 
504 |a Jackiw, (1968) J. Math. Phys., 9, p. 339 
504 |a Glauber, (1963) Phys. Rev., 131, p. 2766 
504 |a Schrödinger, (1930) Berliner Berichte, 296 
504 |a Lax, Integrals of nonlinear equations of evolution and solitary waves (1968) Communications on Pure and Applied Mathematics, 21, p. 467 
504 |a Stoler, (1975) Phys. Rev., 11 D, p. 3033 
504 |a Messiah, (1964) Mecanique Quantique, , Dunod, Paris 
504 |a Kostin, (1972) J. Chem. Phys., 57, p. 3589 
504 |a Kan, Griffin, Quantized friction and the correspondence principle: Single particle with friction (1974) Physics Letters B, 50 B, p. 24 
504 |a Hasse, (1978) J. Phys., 11 A, p. 1245 
504 |a Remaud, Hernandez, (1981) Physica, 107 A, p. 553 
506 |2 openaire  |e Política editorial 
520 3 |a We introduce the generalized coherent states (G.C.S.) as eigenstates of the unitarily equivalent representations of the annihilation operator. The G.C.S. extension in phase space evolves with time and keeps the uncertainly product (with correlation) at its minimum. The conditions for the propagation of the G.C.S. in a time-dependent field are derived. In the presence of dissipation, an equation of motion is found that describes the G.C.S. decay towards the ground state; its results are compared with those of non-linear Schrödinger equations. © 1982.  |l eng 
593 |a Institut de Physique, 2, chemin de la Houssinière, 44072 Nantes Cedex, France 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
700 1 |a Dorso, Claudio Oscar 
700 1 |a Hernandez, E.S. 
773 0 |d 1982  |g v. 112  |h pp. 193-213  |k n. 1-2  |p Phys A Stat Mech Appl  |x 03784371  |w (AR-BaUEN)CENRE-280  |t Physica A: Statistical Mechanics and its Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-4244049096&doi=10.1016%2f0378-4371%2882%2990214-X&partnerID=40&md5=dfb4471d59c629622fba614c51e9e86a  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/0378-4371(82)90214-X  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03784371_v112_n1-2_p193_Remaud  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v112_n1-2_p193_Remaud  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_03784371_v112_n1-2_p193_Remaud  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI