Bacterial activity in NW Mediterranean seagrass (Posidonia oceanica) sediments

We examine here the hypothesis that benthic bacterial activity in seagrass [Posidonia oceanica (L.) Delile] meadows is dependent on seagrass growth and availability of inorganic nutrients in the sediments. This was achieved by measuring bacterial activity (ammonification rates, and exoproteolytic an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: López, N.I
Otros Autores: Duarte, C.M, Vallespinós, F., Romero, J., Alcoverro, T.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1995
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11785caa a22012497a 4500
001 PAPER-12451
003 AR-BaUEN
005 20230518204238.0
008 190411s1995 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0028993170 
024 7 |2 cas  |a phosphorus, 7723-14-0 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JEMBA 
100 1 |a López, N.I. 
245 1 0 |a Bacterial activity in NW Mediterranean seagrass (Posidonia oceanica) sediments 
260 |c 1995 
270 1 0 |m Duarte, C.M. 
506 |2 openaire  |e Política editorial 
504 |a Alcoverro, Duarte, Romero, Annual growth dynamics of Posidonia oceanica: Contribution of large-scale versus local factors to seasonality (1995) Mar. Ecol. Prog. Ser., , in press 
504 |a Alef, Kleiner, Arginine ammonification, a simple method to estimate microbial activity potencials in soils (1986) Soil Biol. Biochem., 18, pp. 233-235 
504 |a Bird, Duarte, Bacteria-organic matter relationship in sediments: a case of spurious correlation (1989) Can. J. Aquat. Sci., 46, pp. 904-908 
504 |a Boon, Organic matter degradation and nutrient regeneration in Australian freshwaters: I. Methods for exoenzyme assays in turbid aquatic environments (1989) Arch. Hydrobiol., 115, pp. 339-359 
504 |a Boon, Moriarty, Saffigna, Rates of ammonium turnover and the role of aminoacid deamination in seagrass (Zostera capricorni) beds of Moreton Bay, Australia (1986) Mar. Biol., 91, pp. 259-268 
504 |a Caffrey, Kemp, Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliatus and Zostera marina (1990) Marine Ecology Progress Series, 66, pp. 147-160 
504 |a Capone, Kiene, Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon catabolism (1988) Limnol. Oceanogr., 33, pp. 725-749 
504 |a Chin-Leo, Benner, Dynamics of bacterioplankton abundance and production in seagrass communities of a hypersaline lagoon (1991) Mar. Ecol. Prog. Ser., 73, pp. 219-230 
504 |a Chróst, Microbial ectoenzymes in aquatic environments (1990) Aquatic microbial ecology, biochemical and moleculat approaches, pp. 47-78. , J. Overbeck, R.J. Chróst, Springer-Verlang, New York 
504 |a den Hartog, (1970) The seagrasses of the world, , Elsevier, Amsterdam, London 
504 |a Duarte, Seagrass nutrient content (1990) Marine Ecology Progress Series, 67, pp. 201-207 
504 |a Duarte, Nutrient concentration of aquatic plants: Patterns across species (1992) Limnol. Oceanog., 37, pp. 882-889 
504 |a Efron, Tibshirani, Bootstrap methods for standard errors confidence intervals and other methods of statistical accuracy (1986) Statistical Science, 1, pp. 54-77 
504 |a Grasshoff, Ehrhardt, Kremling, (1983) Methods of seawater analysis, p. 419. , Verlag Chemie, Weinheim 
504 |a Hall, Anderson, Van der Loeff, Sundby, Westerlund, Oxygen up-take kinetics in the benthic boundary layer (1989) Limnol. Oceanog., 34, pp. 734-746 
504 |a Hobbie, Cole, Response of a detrital foodweb to eutrophication (1984) Bull. Mar. Sci., 35, pp. 357-363 
504 |a Hoppe, Significance of exoenzymatic activities in the ecology of brackish water measurements by means of methylumbelliferyl-substrates (1983) Marine Ecology Progress Series, 11, pp. 299-308 
504 |a Joint, Pomeroy, Activity of heterotrophic bacteria in the euphotic zone of the Celtic Sea (1987) Marine Ecology Progress Series, 141, pp. 155-165 
504 |a Jørgensen, The sulfur cycle of a coastal marine sediment (Limfjorden Denmark) (1977) Limnology and Oceanography, 22, pp. 814-832 
504 |a Jørgensen, Sørensen, Seasonal cycles of O 2 , NO 3 , and SO 4 reduction in estuarine sediments: the significance of an NO 3 reduction maximun in spring (1985) Marine Ecology Progress Series, 24, pp. 65-74 
504 |a Jørgensen, Blackburn, Henriksen, Bay, The importance of Posidonia oceanica and Cymodocea nodosa as contributors of free amino acids in water and sediment of seagrass beds (1981) Marine Ecology, 2, pp. 97-112 
504 |a King, Characterization of β-glucosidase activity in intertidal marine sediments (1986) Appl Environ Microbiol, 51, pp. 373-380 
504 |a Mann, Ecology of coastal waters: a systems approach (1982) Stud. Ecol., 8, p. 318 
504 |a Masó, Duarte, The spatial and temporal structure of hydrographic and phytoplankton biomass heterogeneity along Catalan coast (NW Mediterranean) (1989) Journal of Marine Research, 47, pp. 813-827 
504 |a Mayer, Extracellular proteolytic enzyme activity in sediments of intertidal mudflat (1989) Limnology and Oceanography, 34, pp. 973-981 
504 |a Meyer-Reil, Bacterial biomass and heterotrophic activity in sediments and overlying waters (1984) Heterotrophic activity in the sea, 4, pp. 523-546. , J.E. Hobbie, P.J.IeB. Williams, Plenum Press, New York 
504 |a Meyer-Reil, Measurement of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments (1986) Marine Ecology Progress Series, 31, pp. 143-149 
504 |a Meyer-Reil, Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments (1987) Appl Environ Microbiol, 53, pp. 1748-1755 
504 |a Moriarty, Boon, Interactions of seagrasses with sediment and water (1989) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian region, pp. 500-535. , Elsevier, Amsterdam 
504 |a Moriarty, Roberts, Pollard, Primary and bacterial productivity of tropical seagrass communities in the Gulf of Carpentaria (1990) Marine Ecology Progress Series, 61, pp. 145-157 
504 |a Richards, Nutrient interactions and microbes (1984) Heterotrophic activity in the sea, 4, pp. 289-312. , J.E. Hobbie, P.J.leB. Williams, Plenum Press, New York 
504 |a Romero, Primary production of Posidonia oceanica beds in the Medas Islands (Girona, NE Spain) (1989) International Workshop on Posidonia beds, pp. 85-91. , C.F. Boudouresque, A. Meinnesz, E. Fresi, V. Gravez, GIS Posidonie publ. 2, FR 
504 |a Seitzinger, Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance (1988) Limnol. Oceanogr., 33, pp. 702-724 
504 |a Smith, Hayasaka, Thayer, Ammonification of amino acids by the rhizosphere microflora of Zostera marina L. and Halodule wrightii Aschers (1984) Bot. Mar., 27, pp. 23-27 
504 |a Sokal, Rohlf, (1969) Biometria, , H. Blume Ediciones, Madrid, Spain 
504 |a Thingstad, Utilization of N P and organic C by heterotrophic bacteria I Outline of a chemostat theory with a consistent concept of “maintenance” metabolism (1987) Marine Ecology Progress Series, 35, pp. 99-109 
504 |a Valiela, (1984) Marine ecological processes, p. 546. , Springer-Verlang, New York 
504 |a Vidal, Contenido y dinámica del fósforo en el sedimento de praderas de fanerógamas marinas (1988) Oecol. Aquat., 9, pp. 41-59 
520 3 |a We examine here the hypothesis that benthic bacterial activity in seagrass [Posidonia oceanica (L.) Delile] meadows is dependent on seagrass growth and availability of inorganic nutrients in the sediments. This was achieved by measuring bacterial activity (ammonification rates, and exoproteolytic and exoglucosidase activities) during an annual cycle in five P. oceanica meadows in the NW Mediterranean. Benthic bacterial activity was high, and tended to increase with increasing seagrass production. This trend is likely to involve a direct effect derived from the greater supply of organic carbon in productive meadows, and an indirect effect derived from the fact that productive meadows develop over nutrient-rich sediments and yield nutrient-rich detritus. Phosphorus availability to bacteria was low, for plant detritus was deficient in phosphorus relative to bacterial requirements, and bacterial activity was reduced after seagrasses depleted inorganic phosphorus from the sediments at the onset of exponential plant growth. These results indicate that, on local and annual time scales, benthic bacterial activity is directly related to seagrass production in the NW Mediterranean, because of enhanced inputs of organic matter by the seagrasses, while on seasonal scales, bacteria and seagrass metabolism are inversely related, apparently because of competition for inorganic nutrients. © 1995.  |l eng 
536 |a Detalles de la financiación: Comisión Sectorial de Investigación Científica 
536 |a Detalles de la financiación: Chongqing Science and Technology Commission 
536 |a Detalles de la financiación: Consejo Interinstitucional de Ciencia y Tecnología 
536 |a Detalles de la financiación: European Commission, MAR88-0225 
536 |a Detalles de la financiación: This work was supported by grants STEP-0063-C of the EC, and grant MAR88-0225 of the CICYT (Spanish Science and Technology Commission). N.I.L. was supported by a scholarship from the CONICET (Consejo National de Investigaciones Cientificas y Tecnicas de la Republica Argentina) and CSIC. We thank G. Borras and S. Mallo for assistance in the laboratory. We thank J. Pascual for kindly providing the data on water temperature, and two anonymous reviewers for useful criticisms. 
593 |a Laboratorio de Genetica Bacteriana, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, 4to. Piso, Pabellon II, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Centro de Estudios Avanzados de Blanes, CSIC, Camí de Sant Bárbara s/n, 17300 Blanes, Girona, Spain 
593 |a Institut de Ciencies del Mar, CSIC Passeig Joan de Borbó s/n, 08028 Barcelona, Spain 
593 |a Departament d'Ecología, Universitat de Barcelona, Avgda. Diagonal 645, 08028 Barcelona, Spain 
690 1 0 |a AMMONIFICATION RATE 
690 1 0 |a CARBON SUPPLY 
690 1 0 |a EXOENZYMATIC ACTIVITY 
690 1 0 |a NUTRIENT AVAILABILITY 
690 1 0 |a SEASONALITY 
690 1 0 |a ORGANIC CARBON 
690 1 0 |a ORGANIC MATTER 
690 1 0 |a PHOSPHORUS 
690 1 0 |a BACTERIA 
690 1 0 |a MICROBIAL ACTIVITY 
690 1 0 |a SEAGRASS 
690 1 0 |a SEDIMENT 
690 1 0 |a BACTERIUM 
690 1 0 |a COMPETITION 
690 1 0 |a DETRITUS 
690 1 0 |a GRASS 
690 1 0 |a INORGANIC NUTRIENT 
690 1 0 |a METABOLISM 
690 1 0 |a MICROBIAL ACTIVITY 
690 1 0 |a NUTRIENT 
690 1 0 |a PLANT GROWTH 
690 1 0 |a SEAGRASS 
690 1 0 |a SEDIMENT 
690 1 0 |a SPAIN 
690 1 0 |a SPAIN 
690 1 0 |a BACTERIA (MICROORGANISMS) 
690 1 0 |a HALOPHILA 
690 1 0 |a POSIDONIA OCEANICA 
700 1 |a Duarte, C.M. 
700 1 |a Vallespinós, F. 
700 1 |a Romero, J. 
700 1 |a Alcoverro, T. 
773 0 |d 1995  |g v. 187  |h pp. 39-49  |k n. 1  |p J. Exp. Mar. Biol. Ecol.  |x 00220981  |w (AR-BaUEN)CENRE-5572  |t Journal of Experimental Marine Biology and Ecology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028993170&doi=10.1016%2f0022-0981%2894%2900170-I&partnerID=40&md5=a06a9ee376183dcdac31f51562d94000  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/0022-0981(94)00170-I  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00220981_v187_n1_p39_Lopez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220981_v187_n1_p39_Lopez  |y Registro en la Biblioteca Digital 
961 |a paper_00220981_v187_n1_p39_Lopez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 73404