Wide propagation of graded signals in nonspiking neurons
Signal processing in neuritic trees is ruled by the concerted action of passive and active membrane properties that, together, determine the degree of electrical compartmentalization of these trees. We analyzed how active properties modulate spatial propagation of graded signals in a pair of nonspik...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
2013
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | Signal processing in neuritic trees is ruled by the concerted action of passive and active membrane properties that, together, determine the degree of electrical compartmentalization of these trees. We analyzed how active properties modulate spatial propagation of graded signals in a pair of nonspiking (NS) neurons of the leech. NS neurons present a very extensive neuritic tree that mediates the interaction with all the excitatory motoneurons in leech ganglia. NS cells express voltageactivated Ca 2+ conductances (VACCs) that, under certain experimental conditions, evoke low-threshold spikes. We studied the distribution of calcium transients in NS neurons loaded with fluorescent calcium probes in response to low-threshold spikes, electrical depolarizing pulses, and synaptic inputs. The three types of stimuli evoked calcium transients of similar characteristics in the four main branches of the neuron. The magnitude of the calcium transients evoked by electrical pulses was a graded function of the change in NS membrane potential and depended on the baseline potential level. The underlying VACCs were partially inactivated at rest and strongly inactivated at - 20 mV. Stimulation of mechanosensory pressure cells evoked calcium transients in NS neurons whose amplitude was a linear function of the amplitude of the postsynaptic response. The results evidenced that VACCs aid an efficient propagation of graded signals, turning the vast neuritic tree of NS cells into an electrically compact structure. © 2013 the American Physiological Society. |
---|---|
Bibliografía: | Andjelic, S., Torre, V., Calcium dynamics and compartmentalization in leech neurons (2005) J Neurophysiol, 94, pp. 4430-4440 Angstadt, J.D., Calabrese, R.L., Calcium currents and graded synaptic transmission between heart interneurons of the leech (1991) J Neurosci, 11, pp. 746-759 Arbas, E.A., Calabrese, R.L., Slow oscillations of membrane potential in interneurons that control heartbeat in the medicinal leech (1987) J Neurosci, 7, pp. 3953-3960 Augustine, G.J., Neher, E., Neuronal Ca 2+ signalling takes the local route (1992) Curr Opin Neurobiol, 2, pp. 302-307 Baylor, D.A., Nicholls, J.G., Chemical and electrical synaptic connexions between cutaneous mechanoreceptor neurones in the central nervous system of the leech (1969) J Physiol, 203, pp. 591-609 Beck, A., Lohr, C., Deitmer, J.W., Calcium transients in subcompartments of the leech retzius neuron as induced by single action potentials (2001) J Neurobiol, 48, pp. 1-18 Burrows, M., Graded synaptic interactions between local premotor interneurons of the locust (1979) J Neurophysiol, 42, pp. 1108-1123 Egelhaaf, M., Borst, A., Calcium accumulation in visual interneurons of the fly: Stimulus dependence and relationship to membrane potential (1995) J Neurophysiol, 73, pp. 2540-2552 Egger, V., Svoboda, K., Mainen, Z.F., Dendrodendritic synaptic signals in olfactory bulb granule cells: Local spine boosts and global low-threshold spike (2005) J Neurosci, 25, pp. 3521-3530 Egger, V., Svoboda, K., Mainen, Z.F., Mechanisms of lateral inhibition in the olfactory bulb: Efficiency and modulation of spike-evoked calcium influx into granule cells (2003) J Neurosci, 23, pp. 7551-7558 Eilers, J., Augustine, G.J., Konnerth, A., Subthreshold synaptic Ca 2+ signaling in fine dendrites and spines of cerebellar Purkinje neurons (1995) Nature, 373, pp. 70-77 Goldberg, J.H., Yuste, R., Tamas, G., Ca 2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca 2+ -permeable AMPA and NMDA receptors to subthreshold Ca 2+ dynamics (2003) J Physiol, 551, pp. 67-78 Graubard, K., Raper, J.A., Hartline, D.K., Graded synaptic transmission between identified spiking neurons (1983) J Neurophysiol, 50, pp. 508-521 Graubard, K., Ross, W.N., Regional distribution of calcium influx into bursting neurons detected with arsenazo III Proc (1989) Natl Acad Sci USA, 82, pp. 5565-5569 Haag, J., Borst, A., Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons (2000) J Neurophysiol, 83, pp. 1039-1051 Hausser, M., Mel, B., Dendrites: Bug or feature? (2003) Curr Opin Neurobiol, 13, pp. 372-383 Hausser, M., Spruston, N., Stuart, G.J., Diversity and dynamics of dendritic signaling (2000) Science, 290, pp. 739-744 Helmchen, F., Svoboda, K., Denk, W., Tank, D.W., In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons (1999) Nat Neurosci, 2, pp. 989-996 Husch, A., Paehler, M., Fusca, D., Paeger, L., Kloppenburg, P., Distinct electrophysiological properties in subtypes of nonspiking olfactory local interneurons correlate with their cell type-specific Ca 2+ current profiles (2009) J Neurophysiol, 102, pp. 2834-2845 Ivanov, A.I., Calabrese, R.L., Intracellular Ca 2+ dynamics during spontaneous and evoked activity of leech heart interneurons: Low-threshold ca currents and graded synaptic transmission (2000) J Neurosci, 20, pp. 4930-4943 Laurent, G., Voltage-dependent nonlinearities in the membrane of locust nonspiking local interneurons, and their significance for synaptic integration (1990) J Neurosci, 10, pp. 2268-2280 Lev-Ram, V., Miyakawa, H., Lasser-Ross, N., Ross, E.M., Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation (1992) J Neurophysiol, 68, pp. 1167-1177 Magee, J.C., Dendritic integration of excitatory synaptic input (2000) Nat Rev Neurosci, 1, pp. 181-190 Marín, B.A., Szczupak, L., Processing of sensory signals by a non-spiking neuron in the leech (2000) J Comp Physiol A, 186, pp. 989-997 Migliore, M., Shepherd, G.M., Emerging rules for the distributions of active dendritic conductances (2002) Nat Rev Neurosci, 3, pp. 362-370 Muller, K.J., Nicholls, J.G., Stent, G.S., (1981) Neurobiology of the Leech, , Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Neher, E., Augustine, G.J., Calcium gradients and buffers in bovine chromaffin cells (1992) J Physiol, 450, pp. 273-301 Ogawa, H., Baba, Y., Oka, K., Spike-dependent calcium influx in dendrites of the cricket giant interneuron (2000) J Neurobiol, 44, pp. 45-56 Protti, D.A., Flores-Herr, N., von Gersdorff, H., Light evokes Ca 2+ spikes in the axon terminals of a retinal bipolar cell (2000) Neuron, 25, pp. 215-227 Rela, L., Szczupak, L., Coactivation of motoneurons regulated by a network combining electrical and chemical synapses (2003) J Neurosci, 23, pp. 682-692 Rela, L., Szczupak, L., In situ characterization of a rectifyng electrical junction (2007) J Neurophysiol, 97, pp. 1405-1412 Rela, L., Yang, S.M., Szczupak, L., Calcium spikes in a leech nonspiking neuron (2009) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 195, pp. 139-150 Reyes, A., Influence of dendritic conductances on the input-output properties of neurons (2001) Annu Rev Neurosci, 24, pp. 653-675 Rodriguez, M.J., Alvarez, R.J., Szczupak, L., Effect of a nonspiking neuron on motor patterns of the leech (2012) J Neurophysiol, 107, pp. 1917-1924 Rodriguez, M.J., Perez-Etchegoyen, C.B., Szczupak, L., Premotor nonspiking neurons regulate coupling among motoneurons that innervate overlapping muscle fiber population (2009) J Comp Physiol A, 195. , 1432-1351 Ross, W.N., Arechiga, H., Nicholls, J.G., Optical recording of calcium and voltage transients following impulses in cell bodies and processes of identified leech neurons in culture (1987) J Neurosci, 7, pp. 3877-3887 Rozsa, B., Zelles, T., Vizi, E.S., Lendvai, B., Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons (2004) J Neurosci, 24, pp. 661-670 Schiller, J., Helmchen, F., Sakmann, B., Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones (1995) J Physiol, 487, pp. 583-600 Schiller, J., Schiller, Y., Stuart, G., Sakmann, B., Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons (1997) J Physiol, 505, pp. 605-616 Segev, I., London, M., Untangling dendrites with quantitative models (2000) Science, 290, pp. 744-750 Thoreson, W.B., Rabl, K., Townes-Anderson, E., Heidelberger, R., A highly Ca2-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse (2004) Neuron, p. 42 Wadepuhl, M., Depression of excitatory motoneurones by a single neurone in the leech central nervous system (1989) J Exp Biol, 143, pp. 509-527 Yuste, R., Denk, W., Dendritic spines as basic functional units of neuronal integration (1995) Nature, 375, pp. 682-684 Zenisek, D., Henry, D., Studholme, K., Yazulla, S., Matthews, G., Voltagedependent sodium channels are expressed in nonspiking retinal bipolar neurons (2001) J Neurosci, 21, pp. 4543-4550 |
ISSN: | 00223077 |
DOI: | 10.1152/jn.00934.2012 |