Electron transfer properties of dual self-assembled architectures based on specific recognition and electrostatic driving forces: Its application to control substrate inhibition in horseradish peroxidase-based sensors

This work describes the synergistic combination of ionic self-assembly and recognition-directed assembly with the aim of creating highly functional bioelectrochemical interfaces compatible with the supramolecular design of a wide variety of biosensing platforms. A recently synthesized glycopolyelect...

Descripción completa

Detalles Bibliográficos
Autor principal: Cortez, M.L
Otros Autores: Pallarola, D., Ceolín, Marcelo Raúl, Azzaroni, O., Battaglini, Fernando
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10806caa a22016697a 4500
001 PAPER-11740
003 AR-BaUEN
005 20241209083905.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84874081726 
024 7 |2 cas  |a lactose, 10039-26-6, 16984-38-6, 63-42-3, 64044-51-5; osmium, 7440-04-2; Coordination Complexes; Electrolytes; Horseradish Peroxidase, 1.11.1.-; Lactose, 63-42-3; Osmium, 7440-04-2; Polyamines; polyallylamine, 30551-89-4 
030 |a ANCHA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cortez, M.L. 
245 1 0 |a Electron transfer properties of dual self-assembled architectures based on specific recognition and electrostatic driving forces: Its application to control substrate inhibition in horseradish peroxidase-based sensors 
260 |c 2013 
270 1 0 |m Azzaroni, O.; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química - Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CC 16 Suc. 4, (1900) La Plata, Argentina; email: azzaroni@inifta.unlp.edu.ar 
504 |a Faul, C.F.J., Antonietti, M., (2003) Adv. Mater., 15, p. 673 
504 |a Ikkala, O., Ten Brinke, G., (2002) Science, 295, p. 2407 
504 |a Thünemann, A.F., (2002) Prog. Polym. Sci. (Oxford), 27, p. 1473 
504 |a Perico, A., Ciferri, A., (2009) Chem. - Eur. J., 15, p. 6312 
504 |a Gröhn, F., (2008) Macromol. Chem. Phys., 209, p. 2291 
504 |a Thünemann, A.F., Müller, M., Dautzenberg, H., Joanny, J.F., Löwen, H., (2004) Adv. Polym. Sci., 166, p. 113 
504 |a Zhou, S., Burger, C., Chu, B., (2004) J. Phys. Chem. B, 108, p. 10819 
504 |a Thünemann, A.F., General, S., (2001) J. Controlled Release, 75, p. 237 
504 |a Antonietti, M., Conrad, J., Thünemann, A., (1994) Macromolecules, 27, p. 6007 
504 |a Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F., (2011) Anal. Chem., 83, p. 8011 
504 |a Cortez, M.L., González, G.A., Battaglini, F., (2011) Electroanalysis, 23, p. 156 
504 |a Kobayashi, Y., Hoshi, T., Anzai, J.I., (2001) Chem. Pharm. Bull., 49, p. 755 
504 |a Azzaroni, O., Álvarez, M., Abou-Kandil, A.I., Yameen, B., Knoll, W., (2008) Adv. Funct. Mater., 18, p. 3487 
504 |a Mir, M., Álvarez, M., Azzaroni, O., Tiefenauer, L., Knoll, W., (2008) Anal. Chem., 80, p. 6554 
504 |a Pallarola, D., Queralto, N., Knoll, W., Azzaroni, O., Battaglini, F., (2010) Chem. - Eur. J., 16, p. 13970 
504 |a Deacon, A., Gleichmann, T., Kalb, A.J., Price, H., Raftery, J., Bradbrook, G., Yariv, J., Helliwell, J.R., (1997) J. Chem. Soc., Faraday Trans., 93, p. 4305 
504 |a Edelman, G.M., Cunningham, B.A., Reeke Jr., G.N., Becker, J.W., Waxdal, M.J., Wang, J.L., (1972) Proc. Natl. Acad. Sci. U.S.A., 69, p. 2580 
504 |a Arrondo, J.L.R., Young, N.M., Mantsch, H.H., (1988) BBA, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 952, p. 261 
504 |a Alter, G.M., Pandolfino, E.R., Christie, D.J., Magnuson, J.A., (1977) Biochemistry, 16, p. 4034 
504 |a Becker, J.W., Reeke Jr., G.N., Cunningham, B.A., Edelman, G.M., (1976) Nature, 259, p. 406 
504 |a Kalb, A.J., Levitzki, A., (1968) Biochem. J., 109, p. 669 
504 |a Derewenda, Z., Yariv, J., Helliwell, J.R., Kalb, A.J., Dodson, E.J., Papiz, M.Z., Wan, T., Campbell, J., (1989) EMBO J., 8, p. 2189 
504 |a Reeke Jr., G.N., Becker, J.W., Edelman, G.M., (1975) J. Biol. Chem., 250, p. 1525 
504 |a Pallarola, D., Queralto, N., Battaglini, F., Azzaroni, O., (2010) Phys. Chem. Chem. Phys., 12, p. 8071 
504 |a Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F., (2012) Chem. Commun., 48, p. 10868 
504 |a Danilowicz, C., Corton, E., Battaglini, F., (1998) J. Electroanal. Chem., 445, p. 89 
504 |a Pallarola, D., Queralto, N., Knoll, W., Ceolin, M., Azzaroni, O., Battaglini, F., (2010) Langmuir, 26, p. 13684 
504 |a Flexer, V., Forzani, E.S., Calvo, E.J., Ludueña, S.J., Pietrasanta, L.I., (2006) Anal. Chem., 78, p. 399 
504 |a Cortón, E., Battaglini, F., (2001) J. Electroanal. Chem., 511, p. 8 
504 |a Savéant, J.M., (2006) Elements of Molecular and Biomolecular Electrochemistry, , Wiley: New Jersey, USA 
504 |a Dequaire, M., Limoges, B., Moiroux, J., Savéant, J.M., (2002) J. Am. Chem. Soc., 124, p. 240 
504 |a Coman, V., Gustavsson, T., Finkelsteinas, A., Von Wachenfeldt, C., Hägerhäll, C., Gorton, L., (2009) J. Am. Chem. Soc., 131, p. 16171 
504 |a Ertl, P., Mikkelsen, S.R., (2001) Anal. Chem., 73, p. 4241 
504 |a Reska, A., Gasteier, P., Schulte, P., Moeller, M., Offenhäusser, A., Groll, J., (2008) Adv. Mater., 20, p. 2751 
504 |a Fromherz, P., (2008) Solid-State Electron., 52, p. 1364 
504 |a Schätzthauer, R., (1998) Eur. J. Neurosci., 10, p. 1956 
506 |2 openaire  |e Política editorial 
520 3 |a This work describes the synergistic combination of ionic self-assembly and recognition-directed assembly with the aim of creating highly functional bioelectrochemical interfaces compatible with the supramolecular design of a wide variety of biosensing platforms. A recently synthesized glycopolyelectrolyte constituted of polyallylamine bearing redox-active osmium complexes and glycosidic residues (lactose) is used to create a self-assembled structure with sodium dodecylsulfate. In turn, this supramolecular thin films bearing redox-active and biorecognizable carbohydrate units enable the facile assembly of functional lectins as well as the subsequent docking and "wiring" of glycoenzymes, like horseradish peroxidase (HRP) (an elusive enzyme to immobilize via noncovalent interactions). The assembly of this system was followed by quartz crystal microbalance and grazing-incidence small-angle X-ray scattering (GISAXS) studies confirming that spin-coated ionically self-assembled films exhibit mesostructured architectures according to the formation of self-organized lamellar structures. In-depth characterization of the electrocatalytic properties of the biosupramacromolecular assemblies confirmed the ability of this kind of interfacial architecture to efficiently mediate electron transfer processes between the glycoenzyme and the electrode surface. For instance, our experimental electrochemical evidence clearly shows that tailor-made interfacial configurations of the ionic self-assemblies can prevent the inhibition of the glycoenzyme (typically observed in HRP) leading to bioelectrocatalytic currents up to 0.1 mA cm-2. The presence of carbohydrate moieties in the ionic domains promotes the biorecognition-driven assembly of lectins adding a new dimension to the capabilities of ionic self-assembly. © 2013 American Chemical Society.  |l eng 
593 |a INQUIMAE - Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química - Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CC 16 Suc. 4, (1900) La Plata, Argentina 
690 1 0 |a BIO-ELECTROCHEMICAL 
690 1 0 |a BIOELECTROCATALYTIC CURRENTS 
690 1 0 |a BIOSENSING PLATFORMS 
690 1 0 |a ELECTROCATALYTIC PROPERTIES 
690 1 0 |a ELECTRODE SURFACES 
690 1 0 |a ELECTRON TRANSFER 
690 1 0 |a ELECTRON TRANSFER PROCESS 
690 1 0 |a ELECTROSTATIC DRIVING 
690 1 0 |a GLYCOSIDIC RESIDUES 
690 1 0 |a GRAZING INCIDENCE SMALL-ANGLE X-RAY SCATTERING 
690 1 0 |a HORSERADISH PEROXIDASE 
690 1 0 |a INTERFACIAL ARCHITECTURE 
690 1 0 |a INTERFACIAL CONFIGURATIONS 
690 1 0 |a IONIC SELF-ASSEMBLY 
690 1 0 |a ITS APPLICATIONS 
690 1 0 |a MESOSTRUCTURED 
690 1 0 |a NEW DIMENSIONS 
690 1 0 |a NON-COVALENT INTERACTION 
690 1 0 |a OSMIUM COMPLEXES 
690 1 0 |a POLYALLYLAMINE 
690 1 0 |a REDOX-ACTIVE 
690 1 0 |a SELF ASSEMBLED FILMS 
690 1 0 |a SELF ASSEMBLED STRUCTURES 
690 1 0 |a SELF-ASSEMBLED ARCHITECTURES 
690 1 0 |a SPECIFIC RECOGNITION 
690 1 0 |a SUBSTRATE INHIBITION 
690 1 0 |a SUPRAMOLECULAR THIN FILM 
690 1 0 |a SYNERGISTIC COMBINATIONS 
690 1 0 |a ELECTRODES 
690 1 0 |a IONS 
690 1 0 |a ORGANIC COMPOUNDS 
690 1 0 |a SELF ASSEMBLY 
690 1 0 |a SODIUM DODECYL SULFATE 
690 1 0 |a SUGARS 
690 1 0 |a SUPRAMOLECULAR CHEMISTRY 
690 1 0 |a SYNTHESIS (CHEMICAL) 
690 1 0 |a ELECTRON TRANSITIONS 
690 1 0 |a COORDINATION COMPOUND 
690 1 0 |a ELECTROLYTE 
690 1 0 |a HORSERADISH PEROXIDASE 
690 1 0 |a LACTOSE 
690 1 0 |a OSMIUM 
690 1 0 |a POLYALLYLAMINE 
690 1 0 |a POLYAMINE 
690 1 0 |a ARTICLE 
690 1 0 |a CHEMISTRY 
690 1 0 |a ELECTROCHEMICAL ANALYSIS 
690 1 0 |a ELECTRODE 
690 1 0 |a ELECTRON TRANSPORT 
690 1 0 |a ENZYME SPECIFICITY 
690 1 0 |a GENETIC PROCEDURES 
690 1 0 |a METABOLISM 
690 1 0 |a OXIDATION REDUCTION REACTION 
690 1 0 |a QUARTZ CRYSTAL MICROBALANCE 
690 1 0 |a SMALL ANGLE SCATTERING 
690 1 0 |a STATIC ELECTRICITY 
690 1 0 |a X RAY DIFFRACTION 
690 1 0 |a BIOSENSING TECHNIQUES 
690 1 0 |a COORDINATION COMPLEXES 
690 1 0 |a ELECTROCHEMICAL TECHNIQUES 
690 1 0 |a ELECTRODES 
690 1 0 |a ELECTROLYTES 
690 1 0 |a ELECTRON TRANSPORT 
690 1 0 |a HORSERADISH PEROXIDASE 
690 1 0 |a LACTOSE 
690 1 0 |a OSMIUM 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a POLYAMINES 
690 1 0 |a QUARTZ CRYSTAL MICROBALANCE TECHNIQUES 
690 1 0 |a SCATTERING, SMALL ANGLE 
690 1 0 |a STATIC ELECTRICITY 
690 1 0 |a SUBSTRATE SPECIFICITY 
690 1 0 |a X-RAY DIFFRACTION 
700 1 |a Pallarola, D. 
700 1 |a Ceolín, Marcelo Raúl 
700 1 |a Azzaroni, O. 
700 1 |a Battaglini, Fernando 
773 0 |d 2013  |g v. 85  |h pp. 2414-2422  |k n. 4  |p Anal. Chem.  |x 00032700  |w (AR-BaUEN)CENRE-146  |t Analytical Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874081726&doi=10.1021%2fac303424t&partnerID=40&md5=3ec823b9f15f64240384050b5e8e9943  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ac303424t  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00032700_v85_n4_p2414_Cortez  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00032700_v85_n4_p2414_Cortez  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_00032700_v85_n4_p2414_Cortez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI