Ackermannian and primitive-recursive bounds with Dickson's Lemma

Dickson's Lemma is a simple yet powerful tool widely used in decidability proofs, especially when dealing with counters or related data structures in algorithmics, verification and model-checking, constraint solving, logic, etc. While Dickson's Lemma is well-known, most computer scientists...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Figueira, D.
Otros Autores: Figueira, S., Schmitz, S., Schnoebelen, P.
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07812caa a22008417a 4500
001 PAPER-10307
003 AR-BaUEN
005 20230518204020.0
008 190411s2011 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-80052156766 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PSLSE 
100 1 |a Figueira, D. 
245 1 0 |a Ackermannian and primitive-recursive bounds with Dickson's Lemma 
260 |c 2011 
270 1 0 |m Figueira, D.; University of EdinburghUnited Kingdom; email: dfigueir@inf.ed.ac.uk 
506 |2 openaire  |e Política editorial 
504 |a Becker, T., Weispfenning, V., (1993) Gröbner Bases: A Computational Approach to Commutative Algebra, ser. Grad. Texts in Math., 141. , Springer 
504 |a Blass, A., Gurevich, Y., Program termination and well partial orderings (2008) ACM Trans. Comput. Logic, 9, pp. 1-26 
504 |a Bradley, A.R., Manna, Z., Sipma, H.B., Termination analysis of integer linear loops (2005) Lecture Notes in Computer Science, 3653, pp. 488-502. , CONCUR 2005 - Concurrency Theory: 16th International Conference, CONCUR 2005. Proceedings 
504 |a Cichon, E.A., Bittar, E.T., Ordinal recursive bounds for Higman's theorem (1998) Theoretical Computer Science, 201 (1-2), pp. 63-84. , PII S0304397597000091 
504 |a Clote, P., On the finite containment problem for Petri Nets (1986) Theor. Comput. Sci., 43, pp. 99-105 
504 |a De Jongh, D.H.J., Parikh, R., Well-partial orderings and hierarchies (1977) Indag. Math., 39, pp. 195-207 
504 |a Demri, S., Linear-time temporal logics with presburger constraints: An overview (2006) J. Appl. Non-classical Log., 16, pp. 311-347 
504 |a Demri, S., Lazić, R., LTL with the freeze quantifier and register automata (2009) ACM Trans. Comput. Logic, 10 
504 |a Dershowitz, N., Manna, Z., Proving termination with multiset orderings (1979) Commun. ACM, 22, pp. 465-476 
504 |a Figueira, D., Segoufin, L., Future-looking logics on data words and trees (2009) MFCS 2009, ser. LNCS, 5734, pp. 331-343. , Springer 
504 |a Finkel, A., Schnoebelen, Ph., Well-structured transition systems everywhere! (2001) Theoretical Computer Science, 256 (1-2), pp. 63-92. , DOI 10.1016/S0304-3975(00)00102-X, PII S030439750000102X 
504 |a Finkel, A., Mckenzie, P., Picaronny, C., A wellstructured framework for analysing Petri Nets extensions (2004) Inform. And Comput., 195, pp. 1-29 
504 |a Friedman, H.M., Long finite sequences (2001) Journal of Combinatorial Theory. Series A, 95 (1), pp. 102-144. , DOI 10.1006/jcta.2000.3154, PII S0097316500931546 
504 |a Gallo, G., Mishra, B., A solution to kronecker's problem (1994) Appl. Algebr. Eng. Comm., 5, pp. 343-370 
504 |a Hofbauer Dieter, Termination proofs by multiset path orderings imply primitive recursive derivation lengths (1992) Theoretical Computer Science, 105 (1), pp. 129-140. , DOI 10.1016/0304-3975(92)90289-R 
504 |a Howell, R.R., Rosier, L.E., Huynh, D.T., Yen, H.-C., Some complexity bounds for problems concerning finite and 2-dimensional vector addition systems with states (1986) Theor. Comput. Sci., 46, pp. 107-140 
504 |a Karp, R.M., Miller, R.E., Parallel program schemata (1969) J. Comput. Syst. Sci., 3, pp. 147-195 
504 |a Ketonen, J., Solovay, R., Rapidly growing ramsey functions (1981) Ann. Math., 113, pp. 27-314 
504 |a Kruskal, J.B., The theory of well-quasi-ordering: A frequently discovered concept (1972) J. Comb. Theory A, 13, pp. 297-305 
504 |a Lepper, I., Simply terminating rewrite systems with long derivations (2004) Archive for Mathematical Logic, 43 (1), pp. 1-18. , DOI 10.1007/s00153-003-0190-2 
504 |a Löb, M., Wainer, S., Hierarchies of number theoretic functions, I (1970) Arch. Math. Logic, 13, pp. 39-51 
504 |a Mayr, E.W., Meyer, A.R., The complexity of the finite containment problem for Petri Nets (1981) J. ACM, 28, pp. 561-576 
504 |a Mayr, R., Undecidable problems in unreliable computations (2003) Theor. Comput. Sci., 297, pp. 337-354 
504 |a Mcaloon, K., Petri nets and large finite sets (1984) Theor. Comput. Sci., 32, pp. 173-183 
504 |a Milner, E.C., Basic WQO- and BQO-theory (1985) Graphs and Order. The Role of Graphs in the Theory of Ordered Sets and its Applications, pp. 487-502. , I. Rival, Ed. D. Reidel Publishing 
504 |a Podelski, A., Rybalchenko, A., Transition invariants (2004) LICS 2004. IEEE, pp. 32-41 
504 |a Revesz, P.Z., A closed-form evaluation for datalog queries with integer (gap)-order constraints (1993) Theor. Comput. Sci., 116, pp. 117-149 
504 |a Schmitz, S., Schnoebelen, Ph., (2011) Multiply-recursive Bounds with Higman's Lemma, , ENS Cachan, Research Report arXiv:1103.4399[cs.LO], Mar 
504 |a Schnoebelen, Ph., Revisiting ackermann-hardness for lossy counter machines and reset Petri Nets (2010) MFCS 2010, ser. LNCS, 6281, pp. 616-628. , Springer 
504 |a Schnoebelen, Ph., Lossy counter machines decidability cheat sheet (2010) RP 2010, ser. LNCS, 6227, pp. 51-75. , Springer 
504 |a Urquhart, A., The complexity of decision procedures in relevance logic II (1999) J. Symb. Log., 64, pp. 1774-1802 
504 |a Weiermann, A., Complexity bounds for some finite forms of kruskal's theorem (1994) J. Symb. Comput., 18, pp. 463-488A4 - IEEE Comput. Soc. Tech. Comm. Math. Found. Comput. 
520 3 |a Dickson's Lemma is a simple yet powerful tool widely used in decidability proofs, especially when dealing with counters or related data structures in algorithmics, verification and model-checking, constraint solving, logic, etc. While Dickson's Lemma is well-known, most computer scientists are not aware of the complexity upper bounds that are entailed by its use. This is mainly because, on this issue, the existing literature is not very accessible. We propose a new analysis of the length of bad sequences over (ℕk, ≤), improving on earlier results and providing upper bounds that are essentially tight. This analysis is complemented by a "user guide" explaining through practical examples how to easily derive complexity upper bounds from Dickson's Lemma. © 2011 IEEE.  |l eng 
593 |a University of Edinburgh, United Kingdom 
593 |a Dept. of Computer Science, FCEyN, University of Buenos Aires and CONICET, Argentina 
593 |a LSV, ENS Cachan, CNRS, INRIA, France 
690 1 0 |a ALGORITHMICS 
690 1 0 |a COMPUTER SCIENTISTS 
690 1 0 |a CONSTRAINT SOLVING 
690 1 0 |a UPPER BOUND 
690 1 0 |a COMPUTABILITY AND DECIDABILITY 
690 1 0 |a DATA STRUCTURES 
690 1 0 |a MODEL CHECKING 
690 1 0 |a COMPUTATION THEORY 
700 1 |a Figueira, S. 
700 1 |a Schmitz, S. 
700 1 |a Schnoebelen, P. 
711 2 |c Toronto, ON  |d 21 June 2011 through 24 June 2011  |g Código de la conferencia: 86252 
773 0 |d 2011  |h pp. 269-278  |p Proc Symp Logic Comput Sci  |n Proceedings - Symposium on Logic in Computer Science  |x 10436871  |z 9780769544120  |t 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052156766&doi=10.1109%2fLICS.2011.39&partnerID=40&md5=afcad2c5e8a7e8623bc4ed2971dcccaa  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/LICS.2011.39  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10436871_v_n_p269_Figueira  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10436871_v_n_p269_Figueira  |y Registro en la Biblioteca Digital 
961 |a paper_10436871_v_n_p269_Figueira  |b paper  |c PE 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion 
999 |c 71260