|
|
|
|
LEADER |
02115cam a2200361 a 4500 |
001 |
991041173704151 |
005 |
20250409174618.0 |
008 |
190408t20232019enka 001 0 eng |
010 |
|
|
|a 2019938983
|
020 |
|
|
|a 9781916081604
|q (paperback)
|
020 |
|
|
|a 1916081606
|
035 |
|
|
|a (OCoLC)1104603720
|
035 |
|
|
|a (OCoLC)on1104603720
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d OCLCO
|d OCLCF
|d UKMGB
|d OCLCO
|d OCLCL
|d IG#
|
049 |
|
|
|a U@SA
|
050 |
0 |
0 |
|a Q325.5
|b .W55 2019
|
082 |
0 |
|
|a 006.3
|2 23
|
100 |
1 |
|
|a Wilmott, Paul,
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJmxTXkbGCp7VcQPgTgMyd
|
245 |
1 |
0 |
|a Machine learning :
|b an applied mathematics introduction /
|c Paul Wilmott.
|
250 |
|
|
|a 1st ed.
|
260 |
|
|
|a [Oxford?] :
|b Panda Ohana Publishing,
|c 2023, c2019.
|
300 |
|
|
|a xiii, 226 pages :
|b illustrations ;
|c 24 cm.
|
500 |
|
|
|a Incluye índice.
|
505 |
0 |
|
|a Prologue -- 1 Introduction -- 2. General Matters -- 3. K Nearest Neighbours -- 4. K Means Clustering -- 5. Naive Bayes Classifier -- 6. Regression Methods -- 7. Support Vector Machines -- 8. Self-Organizing Maps -- 9. Decision Trees -- 10. Neural Networks -- 11. Reinforcement Learning -- Datasets -- Epilogue
|
520 |
|
|
|a "The book includes many real-world examples from a variety of fields including finance (volatility modelling), economics (interest rates, inflation and GDP), politics (classifying politicians according to their voting records, and using speeches to determine whether a politician is left or right wing), biology (recognising flower varieties, and using heights and weights of adults to determine gender), sociology (classifying locations according to crime statistics), and gambling (fruit machines and Blackjack)."--Descripción del editor.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Linear models (Statistics)
|
650 |
|
0 |
|a Decision making
|x Mathematical models.
|
650 |
|
7 |
|a Aprendizaje automático.
|2 UDESA
|
650 |
|
7 |
|a Inteligencia artificial.
|2 UDESA
|
650 |
|
7 |
|a Modelos lineales (Estadística).
|2 UDESA
|
650 |
|
7 |
|a Toma de decisiones
|x Modelos matemáticos.
|2 UDESA
|