The Realization Problem for Positive and Fractional Systems

This book addresses the realization problem of positive and fractional continuous-time and discrete-time linear systems. Roughly speaking the essence of the realization problem can be stated as follows: Find the matrices of the state space equations of linear systems for given their transfer matrice...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kaczorek, Tadeusz
Otros Autores: Sajewski, Lukasz
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Colección:Studies in Systems, Decision and Control, 1
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-04834-5
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:This book addresses the realization problem of positive and fractional continuous-time and discrete-time linear systems. Roughly speaking the essence of the realization problem can be stated as follows: Find the matrices of the state space equations of linear systems for given their transfer matrices. This first book on this topic shows how many well-known classical approaches have been extended to the new classes of positive and fractional linear systems. The modified Gilbert method for multi-input multi-output linear systems, the method for determination of realizations in the controller canonical forms and in observer canonical forms are presented. The realization problem for linear systems described by differential operators, the realization problem in the Weierstrass canonical forms and of the descriptor linear systems for given Markov parameters are addressed. The book also presents a method for the determination of minimal realizations of descriptor linear systems and an extension for cone linear systems. This monographs summarizes recent original investigations of the authors in the new field of the positive and fractional linear systems.
Descripción Física:xviii, 590 p. : il.
ISBN:9783319048345
ISSN:2198-4182 ;