Germination responses to temperature and water potential in Jatropha curcas seeds a hydrotime model explains the difference between dormancy expression and dormancy induction at different incubation temperatures

Background and Aims: Jatropha curcas is a drought-resistant tree whose seeds are a good source of oil that can be used for producing biodiesel. A successful crop establishment depends on a rapid and uniform germination of the seed. In this work we aimed to characterize the responses of J. curcas see...

Descripción completa

Detalles Bibliográficos
Otros Autores: Windauer, Liliana Beatriz, Martinez, J., Rapoport, Daniel, Wassner, Diego Fernán, Benech Arnold, Roberto Luis
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2012Windauer.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04456cab a22006857a 4500
001 AR-BaUFA000228
003 AR-BaUFA
005 20230616150305.0
008 181208t2012 |||||o|||||00||||eng d
999 |c 46662  |d 46662 
022 |a 0305-7364 
024 |a 10.1093/aob/mcr242 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Germination responses to temperature and water potential in Jatropha curcas seeds   |b a hydrotime model explains the difference between dormancy expression and dormancy induction at different incubation temperatures 
520 |a Background and Aims: Jatropha curcas is a drought-resistant tree whose seeds are a good source of oil that can be used for producing biodiesel. A successful crop establishment depends on a rapid and uniform germination of the seed. In this work we aimed to characterize the responses of J. curcas seeds to temperature and water availability, using thermal time and hydrotime analysis. Methods: Thermal and hydrotime analysis was performed on germination data obtained from the incubation of seeds at different temperatures and at different water potentials. Key Results: Base and optimum temperatures were 14.4 and 30°C, respectively. Approximately 20 of the seed population displayed absolute dormancy and part of it displayed relative dormancy which was progressively expressed in further fractions when incubation temperatures departed from 25°C. The thermal time model, but not the hydrotime model, failed to describe adequately final germination percentages at temperatures other than 25°C. The hydrotime constant, uH, was reduced when the incubation temperature was increased up to 30°C, the base water potential for 50 germination, PSI b[50], was less negative at 20 and 30°C than at 25°C, indicating either expression or induction of dormancy. At 20°C this less negative PSI b[50] explained satisfactorily the germination curves obtained at all water potentials, while at 30°C it had to be corrected towards even less negative values to match observed curves at water potentials below 0. Hence, PSI b[50] appeared to have been further displaced to less negative values as exposure to 30°C was prolonged by osmoticum. These results suggest expression of dormancy at 20°C and induction of secondary dormancy above 25°C. This was confirmed by an experiment showing that inhibition of germination imposed by temperatures higher than 30°C, but not that imposed at 20°C, is a permanent effect. Conclusions: This study revealed [a] the extremely narrow thermal range within which dormancy problems [either through expression or induction of dormancy] may not be encountered; and [b] the high sensitivity displayed by these seeds to water shortage. In addition, this work is the first one in which temperature effects on dormancy expression could be discriminated from those on dormancy induction using a hydrotime analysis. 
653 0 |a DORMANCY 
653 0 |a EUPHORBIACEAE 
653 0 |a HYDROTIME 
653 0 |a JATROPHA CURCAS 
653 0 |a SEED GERMINATION 
653 0 |a THERMAL TIME 
653 0 |a WATER POTENTIAL 
653 0 |a WATER 
653 0 |a ADAPTATION 
653 0 |a DROUGHT RESISTANCE 
653 0 |a FRACTIONATION 
653 0 |a GENE EXPRESSION 
653 0 |a GERMINATION 
653 0 |a INHIBITION 
653 0 |a NUMERICAL MODEL 
653 0 |a PHYSIOLOGICAL RESPONSE 
653 0 |a POPULATION STRUCTURE 
653 0 |a SEED DORMANCY 
653 0 |a SHRUB 
653 0 |a TEMPERATURE EFFECT 
653 0 |a WATER AVAILABILITY 
653 0 |a WATER USE EFFICIENCY 
653 0 |a ARGENTINA 
653 0 |a GROWTH, DEVELOPMENT AND AGING 
653 0 |a JATROPHA 
653 0 |a METABOLISM 
653 0 |a PHYSIOLOGY 
653 0 |a PLANT SEED 
653 0 |a SEED DORMANCY 
653 0 |a TEMPERATURE 
653 0 |a GERMINATION 
653 0 |a SEEDS 
653 0 |a EUPHORBIACEAE 
653 0 |a JATROPHA CURCAS 
700 1 |a Windauer, Liliana Beatriz  |9 9670 
700 1 |a Martinez, J.  |9 70036 
700 1 |a Rapoport, Daniel  |9 33508 
700 1 |9 11464  |a Wassner, Diego Fernán 
700 1 |9 663  |a Benech Arnold, Roberto Luis 
773 |t Annals of Botany  |g Vol.109, no.1 (2012), p.265-273 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2012Windauer.pdf  |i En reservorio  |q application/pdf  |f 2012Windauer  |x MIGRADOS2018 
856 |u https://academic.oup.com/aob  |x MIGRADOS2018  |z LINK AL EDITOR 
942 0 0 |c ARTICULO 
942 0 0 |c ENLINEA 
976 |a AAG